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Neben der Formulierung seiner Bewegungsgesetze war ISAAK NEWTON’s
zweiter und vielleicht grösster Beitrag zur Physik die Entdeckung des all-
gemeinen Gravitationsgesetzes. Es beschreibt die Wechselwirkung zwi-
schen zwei Körpern, Planeten oder auch kleineren Teilchen, die eine Be-
wegung hervorruft, welche durch die KEPLER’schen Gesetze beschrieben
werden kann. Das Gesetz wurde 1666 von NEWTON formuliert und 1687
als Kapitel seines Monumentalwerks Philosophiae Naturalis Principia Ma-
thematica publiziert.
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1.1 Fragen zur Vorbereitung

• Wie ist Trägheit definiert?

• Was ist Torsion?

• Was ist das Drehmoment?

• Wie lautet die Einheit der Gravitationskonstanten?

• Wie funktioniert das Experiment nach Cavendish?

• Was ist eine harmonische Bewegung?

• Wie lautet die zugehörige Bewegungsgleichung?

• Was geschieht, wenn man einen Schacht durch den Erdmittelpunkt bohrt und einen Ball
hinein wirft?

1.2 Theorie

1.2.1 Das Newton’sche Gravitationsgesetz

Das zweite KEPLER’sche Gesetz besagt, dass die Kraft, welche mit der Gravitationwechselwir-
kung assoziiert wird, eine Zentralkraft ist. Das heisst die Kraft wirkt längs einer Verbindungs-
linie zwischen den Schwerpunkten zweier wechselwirkender Körper. Wenn wir annehmen,
dass die Gravitationswechselwirkung eine allgemeine Eigenschaft ist, muss andererseits die
Kraft F, die mit der Wechselwirkung assoziiert wird, proportional zur „Menge” an Materie
in jedem Körper sein, d.h. proportional den entsprechenden Massen m1 und m2. Wir können
daher schreiben:

F = m1 · m2 · f (r) (1.1)

Es ist schwierig, die Abhängigkeit der Kraft F von der Entfernung r zu bestimmen. Im Prinzip
wird die Abhängigkeit experimentell bestimmt, indem die Kraft zwischen den Massen m1

und m2 bei verschiedenen Entfernungen gemessen wird, wodurch die Beziehung zwischen F
und r schliesslich abgeleitet werden kann. Eine solche experimentelle Bestimmung ist in der
Tat möglich. Sie verlangt jedoch eine empfindliche Messapparatur und für AP-Verhältnisse
relativ grosse Geduld.
NEWTON hatte jedoch keine solchen experimentellen Möglichkeiten. Er erkannte, motiviert
durch die KEPLER-Gesetze, wie das Gravitationsgesetz beschaffen sein musste:

Die Gravitationswechselwirkung zwischen zwei Körpern kann durch eine zentra-
le Anziehungskraft ausgedrückt werden, die den Massen der Körper direkt pro-
portional und dem Quadrat der Entfernungen zwischen ihnen umgekehrt propor-
tional ist.

Oder etwas moderner ausgedrückt:

F = γ ·
m1 · m2

r2 (1.2)

wobei γ die Proportionalitäts- oder Gravitationskonstante ist. Mit der Gleichung (1.2) sind
jedoch die beiden wechselwirkenden Körper als Punktmassen zu verstehen. Für die Beschrei-
bung der Planetenbahnen vernachlässigt man dabei die Ausdehnung der Planeten, da diese
klein gegenüber den Radien der Planetenbahnen sind.
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1.2.2 Das Experiment von Cavendish

Das Kernstück der Gravitationswaage nach Cavendish ist ein an einem dünnen Torsionsfaden
waagerecht aufgehängter leichter Querbalken, der an jedem Ende im Abstand d zum Aufhän-
gepunkt eine kleine Bleikugel der Masse m2 trägt. Diese Kugeln werden von zwei grossen
Bleikugeln der Masse m1 gemäss Gleichung (1.2) angezogen. Obwohl diese Kraft weniger als
10−9N beträgt, kann sie mit der extrem empfindlichen Torsionswaage nachgewiesen werden.
Die Bewegung der kleinen Bleikugeln beobachtet und misst man über einen Lichtzeiger (siehe
Abb. 1.1)

(a) (b)

Abbildung 1.1: Gravitations-Drehwaage nach Cavendish (links) und schematische Darstel-
lung des Lichtzeigers (rechts).

Dieser wird mit Hilfe eines beleuchteten Hohlspiegels erzeugt, der starr am Querbalken des
Torsionspendels befestigt ist. Aus dem zeitlichen Verlauf der Bewegung, der Masse m1 und
der Geometrie der Anordnung ermittelt man dann die Gravitationskonstante anhand der im
nächsten Abschnitt folgenden Überlegungen.

1.2.3 Bestimmung der Gravitationskonstanten

Die Gravitationskraft zwischen je zwei Bleikugeln der Masse m1 und m2 im Abstand b beträgt
gemäss (1.2):

F = γ
m1m2

b2 (1.3)
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Wenn sich die grossen Bleikugeln in der Position I befinden (Abb. 1.1), wirkt somit auf das
Torsionspendel das Drehmoment

MI = 2Fd = 2γ
m1m2

b2 d (1.4)

Dieses wird nun kompensiert durch das Rückstellmoment des Torsionsfadens, so dass das
Pendel die Gleichgewichtslage αI einnimmt. Das bedeutet, das Drehmoment MI kann auch
geschrieben werden als

MI = −DαI (1.5)

wobei D die sogenannte Winkelrichtgrösse, oder auch Direktionsmoment genannt, ist. Durch
Umschwenken der grossen Kugeln in Position I I kehrt man nun die Kräfte symmetrisch um,
so dass nun ein Drehmoment MI I = −MI wirksam ist und das Pendel gedämpfte Schwin-
gungen um die neue Gleichgewichtslage αI I ausführt. Die Differenz der beiden Drehmomente
ist gegeben durch:

MI − MI I = MI − (−MI) = 2MI = 4γ
m1m2

b2 d

= −DαI − (−DαI I) = D(αI I − αI)
(1.6)

Es folgt sofort

4γ
m1m2

b2 d = D(αI I − αI) (1.7)

Die Winkelrichtgrösse D kann aus der Lösung zur Bewegungsgleichung der gedämpften
Schwingung eines Drehpendels bestimmt werden (siehe Appendix). Man erhält

D =

(

4π2

T2 + δ2
)

J =
(4π2 + T2δ2)J

T2 (1.8)

wobei T die Schwingungsdauer, δ die Abklingkonstante der gedämpften Schwingung und J
das Trägheitsmoment des Torsionspendels ist. Letzteres wird nun approximiert, indem man
die beiden kleinen Kugeln als punktförmig annimmt und die Massen der restlichen Teile des
Torsionspendels (Querbalken, Spiegel, Torsionsfaden) vernachlässigt. Somit erhält man:

J = 2m2d2 (1.9)

Somit ergibt sich für Gleichung (1.8):

D =
2(4π2 + T2δ2)m2d2

T2 (1.10)

Setzt man dies in Gleichung (1.7) ein und löst nach der Gravitationskonstante auf, so erhält
man schliesslich:

γ =
(4π2 + T2δ2)b2d

2m1T2 (αI I − αI) (1.11)

1.2.4 Messung des Drehwinkels α

In Abb. 1.1 ist die Messung des Drehwinkels α mit Hilfe des Lichtzeigers beschrieben. Der
Beleuchtungsstrahl des Lichtzeigers steht hier senkrecht zur Nulllage des Torsionspendels
(die Ruhelage ohne grosse Bleikugeln). Die Lichtzeigerposition für die Nullage stimmt mit
dem Skalennullpunkt überein. Zwischen dem Drehwinkel α, der Lichtzeigerposition S und
dem Abstand L0 zwischen Skala und Torsionspendel besteht der Zusammenhang:

tan(2α) =
S

L0
(1.12)
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respektive für sehr kleine Winkel α:

α =
S

2L0
(1.13)

In Abb. 1.2 wird der Hohlspiegel unter dem waagerechten Winkel β beleuchtet. Die Lichtzei-

Abbildung 1.2: Schema zur Bestimmung der Auslenkung mit dem Lichtzeiger.

gerposition O für die Nullage des Torsionspendels hat den Abstand L1 zum Aufpunkt N der
Normalen und den Abstand

L =
√

L2
0 + L2

1 (1.14)

zum Hohlspiegel. Für eine Drehung des Torsionspendels um den Winkel α aus der Nullage
findet man die Zusammenhänge:

S′ = L tan(2α) (1.15)

und
S′

S
=

sin(90◦ − β − 2α)

sin(90◦ + 2α)
= cos(β)− tan(2α) sin(β) (1.16)

Der Winkel α ist in jedem Fall sehr klein (er beträgt höchstens 1.5◦), die Abmessungen der
Gravitations-Drehwaage lassen Beleuchtungswinkel β oberhalb 30◦ nicht zu. Daher ist die
Näherung

S′

S
= cos(β) =

L0

L
(1.17)

zulässig. Mit der zusätzlichen Näherung tan(2α) ≈ 2α folgt somit insgesamt

α =
S

2
L0

L2
0 + L2

1

(1.18)

Diese Gleichung (1.18) ist mit einem systematischen Fehler von 1 − 2% behaftet, bei der Be-
rechnung der Differenz der beiden Gleichgewichtslagen αI − αI I wird dieser systematische
Fehler jedoch beinahe vollständig kompensiert.
Für den Spezialfall der Beleuchtung unter kleinen Winkeln β und für L0 ≫ L1, erhält man aus
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Gleichung (1.18) die bereits hergeleitete Gleichung (1.13).
Gleichung (1.18) ist auch gültig, wenn der Beleuchtungsstrahl nach oben oder unten gekippt
ist. Man richtet auch in diesem Fall die Ableseskala waagerecht aus und lässt Höhenänderun-
gen des Lichtzeigers unberücksichtigt.
Die Nulllage des Torsionspendels, also der Punkt O in Abb. 1.2, ist in der Regel vor der Ver-
suchsdurchführung nicht bekannt. Zur Bestimmung von L1 misst man daher in guter Nähe-
rung den Abstand zwischen dem Normalenaufpunkt N und der Lichtzeigerposition für die
Gleichgewichtslage I. Diese Näherung ist erlaubt, da |α| ≪ 1. Bei nicht zu schräger Beleuch-
tung des Hohlspiegels, also für β ≪ 1, kann L1 = 0 angenommen werden.

Aus diesen Überlegeungen zum Drehwinkel α kann nun für die Versuchssituation in Abb. 1.1
Gleichung (1.13) in Gleichung (1.11) eingesetzt werden. Es ergibt sich damit:

γ =
(4π2 + T2δ2)b2d

4m1T2L0
(SI I − SI) (1.19)

Analog wird für die Versuchssituation in Abb. 1.2 Gleichung (1.18) in Gleichung (1.11) einge-
setzt:

γ =
(4π2 + T2δ2)b2dL0

4m1T2(L2
0 + L2

1)
(SI I − SI) (1.20)

1.2.5 Gegendrehmoment der ”zweiten” Bleikugel

Neben dem Drehmoment durch die Anziehungskraft F der jeweils unmittelbar gegenüberlie-
genden grossen Bleikugel (Abstand b)) wird ein Gegendrehmoment durch die Anziehungs-
kraft F2 der jeweils entfernteren Kugel (Abstand d′) erzeugt (siehe Abb. 1.3). Für das Drehmo-

Abbildung 1.3: Schema zur Berechnung des Gegendrehmoments durch die ”zweite” Bleiku-
gel.

ment MI gilt daher genauer als in Gleichung (1.4) angegeben

MI = 2(F − F⊥
2 )d (1.21)
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wobei aus der Geometrie in Abb. 1.3 folgt

F⊥
2 = F2

b

d′
(1.22)

Die Kraft F2 findet man, indem man sowohl F, als auch F2 mit dem Newton’schen Gravitati-
onsgesetz ausdrückt, beide nach der Gravitationskonstante auflöst und dann gleichsetzt:

F = γ
m1m2

b2 ⇔ γ =
Fb2

m1m2

F2 = γ
m1m2

d′2
⇔ γ =

F2d′2

m1m2

⇒ F2 = F
b2

d′2
(1.23)

Setzt man nun Gleichung (1.23) in Gleichung (1.22), und diese dann in Gleichung (1.21) ein,
so ergibt sich für MI :

MI = 2F(1 −
b3

d′3
)d (1.24)

Die Grösse d′ erhält man sofort aus der Geometrie aus Abb. 1.3:

d′ =
√

(2d)2 + b2 (1.25)

Vergleicht man nun Gleichung (1.24) mit Gleichung (1.4), so sieht man, dass sie bis auf den
Klammerausdruck identisch sind. Das bedeutet, dass analog zu vorher die selbe Herleitung
zur Gravitationskonstante gemacht werden kann, sodass Gleichungen (1.19) und (1.20) nur
mit einem Korrekturfaktor K ergänzt werden müssen. Man erhält schliesslich für die Ver-
suchssituation in Abb. 1.1

γ =
(4π2 + T2δ2)b2d

4m1T2L0
(SI I − SI)K (1.26)

und für die Versuchssituation in Abb. 1.2

γ =
(4π2 + T2δ2)b2dL0

4m1T2(L2
0 + L2

1)
(SI I − SI)K (1.27)

wobei

K =
1

1 − b3

d′3

und d′ =
√

(2d)2 + b2 (1.28)

1.3 Experiment

1.3.1 Versuchsdaten

Grösse Wert

Masse der grossen Kugeln 1500 g ± 10 g
Abstand der kleinen Kugeln vom Aufhängepunkt 4.94 cm ± 0.01 cm
Abstand der kleinen Kugeln von der grossen Kugel 4.85 cm ± 0.01 cm
Abstand des Aufhängepunktes des Fadens zum Massstab 277 cm ± 0.5 cm
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1.3.2 Versuchsaufbau und Justage

• Den Versuchsaufbau vor dem Beginn der Messungen mindestens zwei bis drei Stun-
den erschütterungsfrei stehen lassen, so dass das Pendel in die Gleichgewichtslage ein-
schwenken kann.

1.3.3 Messungen

Wichtig: Beim Umschwenken des Kugelträgers unbedingt Erschütterungen des Gehäuses
etwa durch Anschlagen der Bleikugeln vermeiden.

• Laser einschalten.

• Messe in einem Zeitraum von 10 Minuten die Stellung des Lichtzeigers im Gleichge-
wichtszustand (Position I).

• Träger mit den Bleikugeln zügig aber vorsichtig von Position I in Position I I schwenken
und Stoppuhr starten.

• Stellung des Lichtzeigers auf der Skala während 30 min mindestens alle 30 s ablesen, bis
die Schwingung nachgelassen hat.

• Warte etwa 60 bis 90 Minuten, bis das System wieder im Gleichgewichtszustand ist.

• Messe erneut in einem Zeitraum von 10 Minuten die Stellung des Lichtzeigers im Gleich-
gewichtszustand (Position I I).

• Den Träger mit den Bleikugeln von Position I I in Position I zurückschwenken und Mes-
sung der Oszillation wiederholen.

• Laser ausschalten.

1.3.4 Aufgaben zur Auswertung

• Bestimme die Gleichgewichtslagen im Ruhezustand.

• Bestimme die Periode, die Abklingkonstante und die Gleichgewichtslage beider Oszil-
lationsmessreihen, indem du einen Fit der entsprechenden Funktion an die Daten legst.

• Bilde gewichtete Mittelwerte für die beiden Gleichgewichtslagen, die Periode und die
Abklingkonstante.

• Bestimme die Gravitationskonstante G, den Korrekturfaktor K und die korrigierte Gra-
vitationskonstante Gkorr.

• Führe eine vollständige Fehlerrechnung durch.

• Vergleiche den Literaturwert mit deinem Ergebnis.

9



Appendix

Im Folgenden wird der Ausdruck für die Winkelrichtgrösse D, wie sie in Gleichung (1.8) auf-
taucht, hergeleitet.

Bei einem Drehpendel wird die Auslenkung durch ein Drehmoment verursacht. Dabei erfährt
das Drehpendel ein Rückstellmoment, das der Torsion entgegenwirkt. So erhält man

M = −Dϕ(t) (A.1)

wobei D die Winkelrichtgrösse und ϕ(t) der Auslenkwinkel, abhängig von der Zeit, sind.
Gleichzeitig ist aber ein Drehmoment nichts anderes als die zeitliche Ableitung des Drehim-
pulses L, also

M =
d
dt

L(t) =
d
dt

Jω(t) = J
d
dt

ω(t) = J
d2

dt2 ϕ(t) (A.2)

Da beide gleich dem Drehmoment M sind, darf man sie gleichsetzen und man erhält die
Bewegungsgleichung für ein harmonisches Drehpendel:

J
d2

dt2 ϕ(t) = −Dϕ(t) (A.3)

Führt man nun noch eine Reibung ein, so ist diese analog zu einem Faden- oder Federpen-
del proportional zur zeitlichen Ableitung von ϕ(t). Diese unterstützt das entgegengesetzte
Rückstellmoment, so dass die Bewegungsgleichung zum gedämpften Drehpendel nun lautet

J
d2

dt2 ϕ(t) = −(Dϕ(t) + D̃
d
dt

ϕ(t)) (A.4)

wobei D̃ die Dämpfungskonstante ist. Formt man die Gleichung ein wenig um und definiert
ω2

0 := D/J, so erhält man

d2

dt2 ϕ(t) +
D̃

J

d
dt

ϕ(t) + ω2
0 ϕ(t) = 0 (A.5)

Um diese Differentialgleichung zu lösen macht man den Ansatz ϕ(t) = eλt. Setzt man dies
ein und formt ein wenig um, so ergibt sich

(

λ2 +
D̃

J
λ + ω2

0

)

eλt = 0 (A.6)
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Diese Gleichung ist genau dann null, wenn die Klammer null ist. Das heisst, es liegt eine
quadratische Gleichung für λ vor, dessen Lösungen sind:

λ1,2 =
− D̃

J ±

√

(

D̃
J

)2
− 4ω2

0

2
= −

D̃

2J
±

√

(

D̃

2J

)2

− ω2
0 (A.7)

Wie man sofort sieht, ist es sinnvoll, eine neue Konstante, die sich später in der Lösung zur
Bewegungsgleichung als die Abklingkonstante herausstellt, zu definieren. Definiert man also:

δ :=
D̃

2J
(A.8)

Damit wird Gleichung (A.7) zu

λ1,2 = −δ ±
√

δ2 − ω2
0 (A.9)

Setzt man Gleichung (A.8) rückwirkend in Gleichung (A.5) ein, so führt man sie auf die allge-
mein bekannte Form eines gedämpften Pendels:

d2

dt2 ϕ(t) + 2δ
d
dt

ϕ(t) + ω2
0 ϕ(t) = 0 (A.10)

Betrachtet man nun Gleichung (A.9), so kann man drei unterschiedliche Fälle berücksichtigen.
Der Kriechfall, falls δ > ω0, der aperiodische Grenzfall, falls δ = ω0 und der Schwingfall, falls
δ < ω0. Mit diesen drei Fällen ergeben sich unterschiedliche Lösungen zur Bewegungsglei-
chung (A.10). In diesem Versuch kann man aber nur den Schwingfall beobachten, daher ist
auch hier nur dieser Fall interessant. In diesem Fall wird der Wurzelausdruck komplex und

man schreibt zunächst λ1,2 = −δ −
√

−(ω2
0 − δ2) = −δ − i

√

ω2
0 − δ2, damit der Radikand

sicher reell ist. Dann konstruiert man sich eine Lösung mit den entsprechenden λ1,2 und dem
gemachten Ansatz für ϕ(t). So kommt man auf folgende Lösung zu Gleichung (A.10):

ϕ(t) = Ae−δt sin(ωt + φ) (A.11)

wobei gilt

ω =
√

ω2
0 − δ2 =

2π

T
und ω0 =

√

D

J
(A.12)

Stellt man nun Gleichung (A.12) ein wenig um, erhält man den gesuchten Ausdruck für die
Winkelrichtgrösse:

D =

(

4π2

T2 + δ2
)

J (A.13)
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