Modul Universalkonstanten

Gravitationskonstante

Neben der Formulierung seiner Bewegungsgesetze war ISAAK NEWTON's
zweiter und vielleicht grosster Beitrag zur Physik die Entdeckung des all-
gemeinen Gravitationsgesetzes. Es beschreibt die Wechselwirkung zwi-
schen zwei Korpern, Planeten oder auch kleineren Teilchen, die eine Be-
wegung hervorruft, welche durch die KEPLER’schen Gesetze beschrieben
werden kann. Das Gesetz wurde 1666 von NEWTON formuliert und 1687
als Kapitel seines Monumentalwerks Philosophiae Naturalis Principia Ma-
thematica publiziert.
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1.1 Fragen zur Vorbereitung

* Wie ist Tragheit definiert?

* Was ist Torsion?

* Was ist das Drehmoment?

¢ Wie lautet die Einheit der Gravitationskonstanten?
* Wie funktioniert das Experiment nach Cavendish?
* Was ist eine harmonische Bewegung?

¢ Wie lautet die zugehorige Bewegungsgleichung?

¢ Was geschieht, wenn man einen Schacht durch den Erdmittelpunkt bohrt und einen Ball
hinein wirft?

1.2 Theorie

1.2.1 Das Newton’sche Gravitationsgesetz

Das zweite KEPLERsche Gesetz besagt, dass die Kraft, welche mit der Gravitationwechselwir-
kung assoziiert wird, eine Zentralkraft ist. Das heisst die Kraft wirkt langs einer Verbindungs-
linie zwischen den Schwerpunkten zweier wechselwirkender Korper. Wenn wir annehmen,
dass die Gravitationswechselwirkung eine allgemeine Eigenschaft ist, muss andererseits die
Kraft F, die mit der Wechselwirkung assoziiert wird, proportional zur ,Menge” an Materie
in jedem Korper sein, d.h. proportional den entsprechenden Massen m; und m;. Wir konnen
daher schreiben:

F=my-my- f(r) (1.1)

Es ist schwierig, die Abhdngigkeit der Kraft F von der Entfernung r zu bestimmen. Im Prinzip
wird die Abhéangigkeit experimentell bestimmt, indem die Kraft zwischen den Massen 1,
und m; bei verschiedenen Entfernungen gemessen wird, wodurch die Beziehung zwischen F
und r schliesslich abgeleitet werden kann. Eine solche experimentelle Bestimmung ist in der
Tat moglich. Sie verlangt jedoch eine empfindliche Messapparatur und fiir AP-Verhéltnisse
relativ grosse Geduld.

NEWTON hatte jedoch keine solchen experimentellen Moglichkeiten. Er erkannte, motiviert
durch die KEPLER-Gesetze, wie das Gravitationsgesetz beschaffen sein musste:

Die Gravitationswechselwirkung zwischen zwei Kérpern kann durch eine zentra-
le Anziehungskraft ausgedriickt werden, die den Massen der Korper direkt pro-
portional und dem Quadrat der Entfernungen zwischen ihnen umgekehrt propor-
tional ist.

Oder etwas moderner ausgedrtickt:

miq - mp

F=1« 2

(1.2)

wobei y die Proportionalitdts- oder Gravitationskonstante ist. Mit der Gleichung (1.2) sind
jedoch die beiden wechselwirkenden Korper als Punktmassen zu verstehen. Fiir die Beschrei-
bung der Planetenbahnen vernachldssigt man dabei die Ausdehnung der Planeten, da diese
klein gegentiiber den Radien der Planetenbahnen sind.



1.2.2 Das Experiment von Cavendish

Das Kernsttick der Gravitationswaage nach Cavendish ist ein an einem diinnen Torsionsfaden
waagerecht aufgehdngter leichter Querbalken, der an jedem Ende im Abstand 4 zum Aufhén-
gepunkt eine kleine Bleikugel der Masse m; trdgt. Diese Kugeln werden von zwei grossen
Bleikugeln der Masse m; gemiss Gleichung (1.2) angezogen. Obwohl diese Kraft weniger als
10~°N betréagt, kann sie mit der extrem empfindlichen Torsionswaage nachgewiesen werden.
Die Bewegung der kleinen Bleikugeln beobachtet und misst man iiber einen Lichtzeiger (siehe
Abb. 1.1)

(b)

Abbildung 1.1: Gravitations-Drehwaage nach Cavendish (links) und schematische Darstel-
lung des Lichtzeigers (rechts).

Dieser wird mit Hilfe eines beleuchteten Hohlspiegels erzeugt, der starr am Querbalken des
Torsionspendels befestigt ist. Aus dem zeitlichen Verlauf der Bewegung, der Masse m; und
der Geometrie der Anordnung ermittelt man dann die Gravitationskonstante anhand der im
nichsten Abschnitt folgenden Uberlegungen.

1.2.3 Bestimmung der Gravitationskonstanten

Die Gravitationskraft zwischen je zwei Bleikugeln der Masse m; und m; im Abstand b betrédgt
gemadss (1.2):
mimniy

F=1« )

(1.3)



Wenn sich die grossen Bleikugeln in der Position I befinden (Abb. 1.1), wirkt somit auf das
Torsionspendel das Drehmoment

mimy
B2

M =2Fd =2y d (1.4)
Dieses wird nun kompensiert durch das Riickstellmoment des Torsionsfadens, so dass das
Pendel die Gleichgewichtslage a; einnimmt. Das bedeutet, das Drehmoment M; kann auch
geschrieben werden als

M I = —Du I (15)

wobei D die sogenannte Winkelrichtgrosse, oder auch Direktionsmoment genannt, ist. Durch
Umschwenken der grossen Kugeln in Position II kehrt man nun die Krafte symmetrisch um,
so dass nun ein Drehmoment Mj; = —M; wirksam ist und das Pendel geddmpfte Schwin-
gungen um die neue Gleichgewichtslage «j; ausfiihrt. Die Differenz der beiden Drehmomente
ist gegeben durch:

mim
M[ - MU = M[ — (—MI) = 2M1 = 4’)’ ;}2 ZEZ (1 6)

= —Daj — (—Duayy) = D(agp — ay)

Es folgt sofort
nymsyp

B2
Die Winkelrichtgrosse D kann aus der Losung zur Bewegungsgleichung der gedampften
Schwingung eines Drehpendels bestimmt werden (siehe Appendix). Man erhalt

4 42 4 T252
D= (T—nz 52> = W (1.8)

4y d = D(ay —«y) (1.7)

wobei T die Schwingungsdauer, 6 die Abklingkonstante der gedampften Schwingung und |
das Tragheitsmoment des Torsionspendels ist. Letzteres wird nun approximiert, indem man
die beiden kleinen Kugeln als punktformig annimmt und die Massen der restlichen Teile des
Torsionspendels (Querbalken, Spiegel, Torsionsfaden) vernachldssigt. Somit erhélt man:

] = 2myd? (1.9)
Somit ergibt sich fiir Gleichung (1.8):
2(47% + T?6%)mpd?
T2

Setzt man dies in Gleichung (1.7) ein und 16st nach der Gravitationskonstante auf, so erhalt
man schliesslich:

D=

(1.10)

(4% + T26%)b%d
= 2m T2 (arr —ag) (1.11)

1.24 Messung des Drehwinkels «

In Abb. 1.1 ist die Messung des Drehwinkels a mit Hilfe des Lichtzeigers beschrieben. Der
Beleuchtungsstrahl des Lichtzeigers steht hier senkrecht zur Nulllage des Torsionspendels
(die Ruhelage ohne grosse Bleikugeln). Die Lichtzeigerposition fiir die Nullage stimmt mit
dem Skalennullpunkt tiberein. Zwischen dem Drehwinkel «, der Lichtzeigerposition S und
dem Abstand L zwischen Skala und Torsionspendel besteht der Zusammenhang;:

tan(2a) = > (1.12)
0



respektive fiir sehr kleine Winkel «:
S

= 2—110
In Abb. 1.2 wird der Hohlspiegel unter dem waagerechten Winkel  beleuchtet. Die Lichtzei-

o (1.13)

Abbildung 1.2: Schema zur Bestimmung der Auslenkung mit dem Lichtzeiger.

gerposition O fiir die Nullage des Torsionspendels hat den Abstand L; zum Aufpunkt N der

Normalen und den Abstand
L= \/L% + L% (1.14)

zum Hohlspiegel. Fiir eine Drehung des Torsionspendels um den Winkel « aus der Nullage
findet man die Zusammenhénge:
S = Ltan(2«) (1.15)
und
S"  sin(90° — B — 2x)
S sin(90° 4 2a)

Der Winkel « ist in jedem Fall sehr klein (er betrdgt hochstens 1.5°), die Abmessungen der
Gravitations-Drehwaage lassen Beleuchtungswinkel B oberhalb 30° nicht zu. Daher ist die
Néherung

= cos(p) — tan(2«) sin(pB) (1.16)

s Lo

3= cos(p) 7 (1.17)
zuldssig. Mit der zusitzlichen Ndherung tan(2«) ~ 2« folgt somit insgesamt
S Lo
== 1.18
oy (1.18)

Diese Gleichung (1.18) ist mit einem systematischen Fehler von 1 — 2% behaftet, bei der Be-
rechnung der Differenz der beiden Gleichgewichtslagen a; — aj; wird dieser systematische
Fehler jedoch beinahe vollstindig kompensiert.

Fiir den Spezialfall der Beleuchtung unter kleinen Winkeln g und fiir Ly > L, erhdlt man aus



Gleichung (1.18) die bereits hergeleitete Gleichung (1.13).

Gleichung (1.18) ist auch gtiltig, wenn der Beleuchtungsstrahl nach oben oder unten gekippt
ist. Man richtet auch in diesem Fall die Ableseskala waagerecht aus und lasst Hohendnderun-
gen des Lichtzeigers unberticksichtigt.

Die Nulllage des Torsionspendels, also der Punkt O in Abb. 1.2, ist in der Regel vor der Ver-
suchsdurchfithrung nicht bekannt. Zur Bestimmung von L; misst man daher in guter Nahe-
rung den Abstand zwischen dem Normalenaufpunkt N und der Lichtzeigerposition fiir die
Gleichgewichtslage I. Diese Ndherung ist erlaubt, da |a| < 1. Bei nicht zu schrager Beleuch-
tung des Hohlspiegels, also fiir B < 1, kann L; = 0 angenommen werden.

Aus diesen Uberlegeungen zum Drehwinkel & kann nun fiir die Versuchssituation in Abb. 1.1
Gleichung (1.13) in Gleichung (1.11) eingesetzt werden. Es ergibt sich damit:
(4772 + T256%)b%d

L (Sir—S)) (1.19)

Analog wird fiir die Versuchssituation in Abb. 1.2 Gleichung (1.18) in Gleichung (1.11) einge-

setzt: ( ) ) 2) )
472 + T26%)b2d L
= Sip—S 1.20

1.2.5 Gegendrehmoment der “zweiten” Bleikugel

Neben dem Drehmoment durch die Anziehungskraft F der jeweils unmittelbar gegentiberlie-
genden grossen Bleikugel (Abstand b)) wird ein Gegendrehmoment durch die Anziehungs-
kraft F, der jeweils entfernteren Kugel (Abstand d’) erzeugt (siehe Abb. 1.3). Fiir das Drehmo-
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Abbildung 1.3: Schema zur Berechnung des Gegendrehmoments durch die “"zweite” Bleiku-
gel.

ment M gilt daher genauer als in Gleichung (1.4) angegeben

M =2(F—F)d (1.21)



wobei aus der Geometrie in Abb. 1.3 folgt

b
F = B (1.22)
Die Kraft F, findet man, indem man sowohl F, als auch F, mit dem Newton’schen Gravitati-
onsgesetz ausdriickt, beide nach der Gravitationskonstante auflost und dann gleichsetzt:

mimy Fb?
F == =
b2 <o mymy
. nimsyp . delz
B=7 dar < = MMy
bZ

Setzt man nun Gleichung (1.23) in Gleichung (1.22), und diese dann in Gleichung (1.21) ein,
so ergibt sich fiir M;:
B3

d (1.24)

Die Grosse d’ erhilt man sofort aus der Geometrie aus Abb. 1.3:
d = (2d)? + b? (1.25)

Vergleicht man nun Gleichung (1.24) mit Gleichung (1.4), so sieht man, dass sie bis auf den
Klammerausdruck identisch sind. Das bedeutet, dass analog zu vorher die selbe Herleitung
zur Gravitationskonstante gemacht werden kann, sodass Gleichungen (1.19) und (1.20) nur
mit einem Korrekturfaktor K ergédnzt werden miissen. Man erhilt schliesslich fiir die Ver-
suchssituation in Abb. 1.1

(4% + T26%)b%d

und fiur die Versuchssituation in Abb. 1.2

(472 + T262)b2dL,
= Si—S1)K 1.27
v T (2 + 1) (S11—51) (1.27)

wobei .
1=
1.3 Experiment
1.3.1 Versuchsdaten
| Grosse | Wert |

Masse der grossen Kugeln 1500g +£10g
Abstand der kleinen Kugeln vom Aufhidngepunkt 494 cm £+ 0.01 cm
Abstand der kleinen Kugeln von der grossen Kugel 4.85 cm £ 0.01 cm
Abstand des Aufhdngepunktes des Fadens zum Massstab | 277 cm £ 0.5 cm




1.3.2 Versuchsaufbau und Justage

Den Versuchsaufbau vor dem Beginn der Messungen mindestens zwei bis drei Stun-
den erschiitterungsfrei stehen lassen, so dass das Pendel in die Gleichgewichtslage ein-
schwenken kann.

1.3.3 Messungen

Wichtig: Beim Umschwenken des Kugeltragers unbedingt Erschiitterungen des Gehduses
etwa durch Anschlagen der Bleikugeln vermeiden.

Laser einschalten.

Messe in einem Zeitraum von 10 Minuten die Stellung des Lichtzeigers im Gleichge-
wichtszustand (Position I).

Trager mit den Bleikugeln ziigig aber vorsichtig von Position I in Position II schwenken
und Stoppubhr starten.

Stellung des Lichtzeigers auf der Skala wahrend 30 min mindestens alle 30 s ablesen, bis
die Schwingung nachgelassen hat.

Warte etwa 60 bis 90 Minuten, bis das System wieder im Gleichgewichtszustand ist.

Messe erneut in einem Zeitraum von 10 Minuten die Stellung des Lichtzeigers im Gleich-
gewichtszustand (Position I1).

Den Trager mit den Bleikugeln von Position I1 in Position I zuriickschwenken und Mes-
sung der Oszillation wiederholen.

Laser ausschalten.

1.3.4 Aufgaben zur Auswertung

Bestimme die Gleichgewichtslagen im Ruhezustand.

Bestimme die Periode, die Abklingkonstante und die Gleichgewichtslage beider Oszil-
lationsmessreihen, indem du einen Fit der entsprechenden Funktion an die Daten legst.

Bilde gewichtete Mittelwerte fiir die beiden Gleichgewichtslagen, die Periode und die
Abklingkonstante.

Bestimme die Gravitationskonstante G, den Korrekturfaktor K und die korrigierte Gra-
vitationskonstante Gy;.

Fiihre eine vollstandige Fehlerrechnung durch.

Vergleiche den Literaturwert mit deinem Ergebnis.



Im Folgenden wird der Ausdruck fiir die Winkelrichtgrosse D, wie sie in Gleichung (1.8) auf-
taucht, hergeleitet.

Bei einem Drehpendel wird die Auslenkung durch ein Drehmoment verursacht. Dabei erfahrt
das Drehpendel ein Riickstellmoment, das der Torsion entgegenwirkt. So erhilt man

M = —Dg(t) (A1)

wobei D die Winkelrichtgrosse und ¢(f) der Auslenkwinkel, abhingig von der Zeit, sind.
Gleichzeitig ist aber ein Drehmoment nichts anderes als die zeitliche Ableitung des Drehim-
pulses L, also
d d d d?
M= S = STl = Sw(t) = T 50() (A42)
Da beide gleich dem Drehmoment M sind, darf man sie gleichsetzen und man erhilt die
Bewegungsgleichung fiir ein harmonisches Drehpendel:
d?
J4p9(t) = —Deg(t) (A3)

Fithrt man nun noch eine Reibung ein, so ist diese analog zu einem Faden- oder Federpen-
del proportional zur zeitlichen Ableitung von ¢(t). Diese unterstiitzt das entgegengesetzte
Riickstellmoment, so dass die Bewegungsgleichung zum gedampften Drehpendel nun lautet

00 = ~(Do(t) + DS g(0) (a4)

wobei D die Dampfungskonstante ist. Formt man die Gleichung ein wenig um und definiert
w? := D/], so erhélt man

£ D
]

d
32?0 + T (1) + wie(t) =0 (A5)

Um diese Differentialgleichung zu 16sen macht man den Ansatz ¢(t) = . Setzt man dies
ein und formt ein wenig um, so ergibt sich

D
(/\2 + 7)\ + wg) M=0 (A.6)
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Diese Gleichung ist genau dann null, wenn die Klammer null ist. Das heisst, es liegt eine
quadratische Gleichung fiir A vor, dessen Losungen sind:

~ =\ 2
_b D) _ 42 - -
Mo = T (]) 4w0——2i D 2—w2 (A7)
! 2 T2 2] 0 ‘

Wie man sofort sieht, ist es sinnvoll, eine neue Konstante, die sich spéter in der Losung zur
Bewegungsgleichung als die Abklingkonstante herausstellt, zu definieren. Definiert man also:

D

0:=
2

(A.8)

~

Damit wird Gleichung (A.7) zu

/\1’2 = -0+ \/ 5% — w% (A9)

Setzt man Gleichung (A.8) riickwirkend in Gleichung (A.5) ein, so fithrt man sie auf die allge-
mein bekannte Form eines geddmpften Pendels:

d? d
@go(t) + 25ago(t) + w%qo(t) =0 (A.10)

Betrachtet man nun Gleichung (A.9), so kann man drei unterschiedliche Félle bertiicksichtigen.
Der Kriechfall, falls § > wy, der aperiodische Grenzfall, falls § = wp und der Schwingfall, falls
6 < wp. Mit diesen drei Fillen ergeben sich unterschiedliche Losungen zur Bewegungsglei-
chung (A.10). In diesem Versuch kann man aber nur den Schwingfall beobachten, daher ist
auch hier nur dieser Fall interessant. In diesem Fall wird der Wurzelausdruck komplex und

man schreibt zundchst A1, = —6 — /—(w§ — 6%) = —6 — iy/w} — 62, damit der Radikand

sicher reell ist. Dann konstruiert man sich eine Losung mit den entsprechenden A, und dem
gemachten Ansatz fiir ¢(t). So kommt man auf folgende Losung zu Gleichung (A.10):

p(t) = Ae ' sin(wt + ¢) (A.11)

2 D
w = w(z)—éZ:Tn und wO:”T (A.12)

Stellt man nun Gleichung (A.12) ein wenig um, erhdlt man den gesuchten Ausdruck fiir die
Winkelrichtgrosse:

wobei gilt

2
D= (% + 57—> ] (A.13)
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