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Gekoppelte Pendel
Zwei Pendel, zwischen denen Energie ausgetauscht werden kann, wer-
den als gekoppelte Pendel bezeichnet. Auf jedes Pendel wirkt ein durch die
Schwerkraft verursachtes Richtmoment, welches versucht, das Pendel in
die Ruhelage zurückzuführen. Zudem macht sich die vorhandene Kopp-
lung in Form eines zusätzlichen Richtmoments bemerkbar, das so wirkt,
dass die Feder möglichst entspannt wird.
In diesem Versuch werden sowohl gleich- und gegenphasige Schwingun-
gen als auch Schwebungen untersucht. Dazu werden die Kreisfrequen-
zen τω, τΩ, τ und Ts experimentell bestimmt und anschließend unterein-
ander und mit theoretischen Werten verglichen.
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1.1 Fragen zur Vorbereitung

• Was ist eine harmonische Schwingung?

• Wie lautet ihre Bewegungsgleichung?

• Wie lauten ihre Lösungen?

• Wodurch unterscheidet sich eine harmonische von einer gedämpften Schwingung?

• Wo treten harmonische und wo gedämpfte Schwingungen auf?

• Was ist Schwebung?

1.2 Theorie

1.2.1 Das physikalische und das mathematische Pendel

Als physikalisches Pendel bezeichnet man einen starren Körper, der unter Wirkung der Schwer-
kraft Drehschwingungen um eine feste Achse ausführen kann. Sei J das Trägheitsmoment in
Bezug auf die Drehachse und M das rücktreibende Drehmoment. Dann lautet die Bewegungs-
gleichung:

Jφ̈ = M = −mgl · sin(φ) (1.1)

Bezeichnet man D = mgl als das Direktionsmoment und betrachtet nur kleine Auslenkungs-
winkel φ, dann gilt:

Jφ̈ = −mgl · sin(φ)

≈ −mgl · φ

= −Dφ

(1.2)

Somit lautet die Schwingungsgleichung des physikalischen Pendels:

φ̈ +
D

J
φ = 0 (1.3)

Als Lösung von (1.3) findet sich die ungedämpfte harmonische Schwingung

φ(t) = A · sin(ω0t + δ) (1.4)

mit der Frequenz ω0 =
√

D
J = 2π

T0
, der Phase δ und der darausfolgenden Schwingungsdauer

des Pendels:

T0 = 2π

√

J

D
(1.5)

Die Schwingungsdauer des mathematischen Pendels erhält man als idealisierten Fall des phy-
sikalischen Pendels, indem man die gesamte Masse m des physikalischen Pendels in seinem
Schwerpunkt S konzentriert betrachtet. Dabei habe der Schwerpunkt von der Drehachse den
Abstand l. Damit ergibt sich (1.5) zu:

T0 = 2π

√

ml2

mgl
= 2π

√

l

g
(1.6)
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1.2.2 Bewegungsgleichungen des gekoppelten Pendels

Zur Herleitung der Bewegungsgleichungen des gekoppelten Pendels betrachten wir zwei
identische Pendel, die in der gleichen Ebene schwingen können und die durch eine weiche
Feder gekoppelt sind. Im vorliegenden Versuch übernimmt eine an einem Faden frei beweg-
liche Kopplungsmasse die Aufgabe der Feder (siehe Abbildung 1.1).

Abbildung 1.1: Versuchsaufbau

Jedes Pendel besitzt die Masse m im Abstand L von der Drehachse. Infolge der Schwerkraft
beträgt das rücktreibende Moment Mg bei kleinen Auslenkungen φ für beide Pendel wie in
(1.1),(1.2):

Mg = −mgLφ = −Dgφ (1.7)

Des Weiteren greift an beiden Pendeln ein Kopplungsmoment M f an. Dieses Kopplungsmo-
ment hängt von der Federkonstante k, dem Angriffspunkt der Kopplungsfeder l und der Dif-
ferenz der beiden Auslenkungen φ1 und φ2 ab, gemäß:

M f = −kl2 · (φ1 − φ2) = −D f · (φ1 − φ2) (1.8)

Da die Feder bereits eine gewisse Spannung besitzt, wenn sich die Pendel in ihrer Ruhelage
befinden, entsteht ein weiteres Moment M0. Durch die Federspannung zeigen die Pendel in
ihrer Ruhelage einen Ausschlag α, bzw. −α bezüglich ihrer Vertikallage. Berechnet man nun
die Auslenkungen φ1 und φ2 von dieser Ruhelage, so fällt das Moment der Vorspannung M0

aus der Rechnung heraus, da das Moment des einen Pendels mglα durch das Moment des
anderen Pendels −mglα aufgehoben wird.
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Somit findet man für die Momentengleichungen der Pendel 1 und 2:

M1 = Mg,1 + M f ,1

= −Dgφ1 + D f (φ2 − φ1)

M2 = Mg,2 + M f ,2

= −Dgφ2 − D f (φ2 − φ1)

(1.9)

Einsetzen von (1.9) in die Bewegungsgleichung des physikalischen Pendels (1.1) führt somit
auf die simultanen Differentialgleichungen des gekoppelten Pendels:

J
d2φ1

dt2 = −Dgφ1 + D f (φ2 − φ1)

J
d2φ2

dt2 = −Dgφ2 − D f (φ2 − φ1)

(1.10)

Durch Addition (Subtraktion) dieser Gleichungen (1.10) erhält man die Differentialgleichun-
gen der Winkelsumme (φ1 + φ2) (Winkeldifferenz (φ1 − φ2)):

J
d2 (φ2 + φ1)

dt2 = −Dg (φ2 + φ1)

J
d2 (φ2 − φ1)

dt2 = −
(

Dg + 2D f

)

(φ2 − φ1)

(1.11)

Beide Gleichungen (1.11) stellen, wie (1.3), ungedämpfte harmonische Schwingungen dar. Als
Lösungen findet man analog zu (1.4):

(φ2 + φ1) = 2A · cos (ωt + δ)

(φ2 − φ1) = 2B · cos (Ωt + ∆)
(1.12)

wobei 2A und 2B die Amplituden der Summe, respektive der Differenz der Winkelausschläge
der beiden Pendel und ω, Ω die Kreis- oder Eigenfrequenzen sind:

ω =

√

Dg

J

Ω =

√

Dg + 2D f

J

(1.13)

Zur Beschreibung der Bewegungen der einzelnen Pendel, trennt man die Variablen φ1 und φ2

durch Subtraktion, respektive Addition der Gleichungen (1.12):

φ1 = A · cos (ωt + δ)− B · cos (Ωt + ∆)

φ2 = A · cos (ωt + δ) + B · cos (Ωt + ∆)
(1.14)

Genaueres Betrachten der Bewegungsgleichungen (1.14) zeigt, dass die allgemeinste Bewe-
gung jedes Pendels durch eine Überlagerung zweier harmonischer Schwingungen verschie-
dener Frequenzen, eine sogenannte Schwebung, beschrieben wird. Dabei entspricht die An-
zahl der Eigenschwingungen der Anzahl Freiheitsgrade des Systems (ein Pendel hat einen
Freiheitsgrad und somit eine Eigenschwingung, zwei Pendel haben zwei Freiheitsgrade und
somit zwei Eigenschwingungen). Auf Grund der speziellen Art der Kopplung ist die Eigen-
frequenz ω gerade die Eigenfrequenz des ungekoppelten Pendels (siehe Abschnitt 1.2.1).
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1.2.3 Anfangsbedingungen

Damit die im vorherigen Abschnitt 1.2.2 hergeleiteten Bewegungsgleichungen (1.14) eindeu-
tig bestimmt sind, müssen die vier unbekannten Variablen A, B, δ, ∆ bestimmt werden. Dazu
benötigt man vier zusätzliche voneinander unabhängige Bewegungsgleichungen oder An-
fangsbedingungen. Dazu kann man die folgenden drei Fälle unterscheiden:

1. Fall: Beide Pendel werden zur gleichen Zeit t = 0 in der Lage φ1 = φ2 = φ losgelassen, so
dass sie in Phase schwingen. Für t = 0 ergeben sich somit die folgenden Anfangsbedingun-
gen:

φ1 = φ
dφ1

dt
= 0

φ2 = φ
dφ2

dt
= 0

(1.15)

Einsetzen von (1.15) in (1.14) liefert:

A cos (δ)− B cos (∆) = A cos (δ) + B cos (∆) = φ

−Aω sin (δ) + BΩ sin (∆) = −Aω sin (δ)− BΩ sin (∆) = 0
(1.16)

wobei ω 6= 0 und Ω 6= 0. Damit findet man für die gesuchten Größen:

A = φ B = 0

δ = 0 ∆ = unbestimmt
(1.17)

Somit wird die Schwingung des Systems durch die folgende Gleichung beschrieben:

φ1 = φ2 = φ · cos(ωt) (1.18)

Diese Schwingung enthält nur eine Eigenfrequenz ω und wird als symmetrisch bezeichnet. Da-
bei ist nicht die Symmetrie der Bewegung, sondern die Symmetrie der Gleichungen gemeint.
Es lässt sich gut beobachten, dass in diesem Fall die Kopplung der beiden Pendel gar nicht
zur Geltung kommt und die Feder fortwährend im selben Spannungszustand bleibt.
Die Schwingungsdauer ist gegeben durch:

τω =
2π

ω
= 2π

√

J

Dg
(1.19)

2. Fall: Die beiden Pendel werden zur Zeit t = 0 in der Lage φ1 = −φ, bzw. φ2 = φ losge-
lassen, so dass sie gegenphasig in entgegengesetztem Sinn schwingen. Damit lassen sich die
Anfangsbedingungen folgendermassen aufstellen:

φ1 = −φ
dφ1

dt
= 0

φ2 = +φ
dφ2

dt
= 0

(1.20)

Einsetzen von (1.20) in (1.14) liefert:

−A cos (δ) + B cos (∆) = A cos (δ) + B cos (∆) = φ

−Aω sin (δ) + BΩ sin (∆) = −Aω sin (δ)− BΩ sin (∆) = 0
(1.21)
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wobei ω 6= 0 und Ω 6= 0. Damit findet man für die gesuchten Grössen:

A = 0 B = φ

δ = unbestimmt ∆ = 0
(1.22)

Somit wird die Schwingung des Systems durch die folgende Gleichung beschrieben:

φ2 = −φ1 = φ · cos (Ωt) (1.23)

Auch in diesem Fall enthält die Schwingung nur eine Eigenfrequenz Ω. Diese Form der Schwin-
gung wird asymmetrisch bezeichnet.
Die Schwingungsdauer ist gegeben durch:

τΩ =
2π

Ω
= 2π

√

J

Dg + 2D f
(1.24)

3. Fall: Zur Zeit t = 0 wird das Pendel 1 aus der Lage φ1 = 0 und das Pendel 2 aus der Lage
φ2 = φ losgelassen. Die Anfangsbedingungen sind dann gegeben durch:

φ1 = 0
dφ1

dt
= 0

φ2 = φ
dφ2

dt
= 0

(1.25)

Einsetzen von (1.25) in (1.14) liefert:

φ1(0) = A cos (δ)− B cos (∆) = 0

− Aω sin (δ) + BΩ sin (∆) = 0

φ2(0) = A cos (δ) + B cos (∆) = φ

− Aω sin (δ)− BΩ sin (∆) = 0

(1.26)

wobei auch hier ω 6= 0 und Ω 6= 0 gilt. Damit findet man für die gesuchten Grössen:

A =
φ

2
B =

φ

2
δ = 0 ∆ = 0

(1.27)

Damit erhält man die folgenden Schwingungsgleichungen:

φ1 =
φ

2
(cos (ωt)− cos (Ωt))

φ2 =
φ

2
(cos (ωt) + cos (Ωt))

(1.28)

Einfachheitshalber werden diese Gleichungen (1.28) mit den folgenden Additionstheoremen
umgeschrieben:

cos(α) + cos(β) = 2 cos
(

β + α

2

)

cos
(

β − α

2

)

cos(α)− cos(β) = 2 sin
(

β + α

2

)

sin
(

β − α

2

) (1.29)
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Somit werden die Gleichungen (1.28) zu:

φ1 = φ sin
(

Ω + ω

2
t

)

· sin
(

Ω − ω

2
t

)

φ2 = φ cos
(

Ω + ω

2
t

)

· cos
(

Ω − ω

2
t

) (1.30)

Nach (1.13) wird bei schwacher Kopplung (D f ≪ Dg) Ω − ω klein gegen Ω + ω. Somit än-
dern sich die beiden Funktionen sin

(

Ω−ω
2 t

)

und cos
(

Ω−ω
2 t

)

langsam gegen sin
(

Ω+ω
2 t

)

und
cos

(

Ω+ω
2 t

)

. Daher kann die Bewegung jedes einzelnen Pendels als Schwingung mit der Fre-
quenz Ω+ω

2 aufgefasst werden, deren Amplitude einer langsamen periodischen Änderung
der Frequenz Ω−ω

2 unterworfen ist. Dies wird als Schwebung bezeichnet. Zwischen den beiden
Bewegungen der beiden Pendel besteht dabei ein Phasenunterschied von π

2 . Das bedeutet,
dass das eine Pendel zum Stillstand kommt, wenn das andere Pendel die maximale Amplitu-
de erreicht. Die Schwingungsenergie wandert also andauernd zwischen den beiden Pendeln
hin und her. Im Experiment wird diese Energie schliesslich als Konsequenz der Reibung zu-
nehmend in Wärme umgewandelt. Diese Dämpfung wurde in der Rechnung jedoch nicht
berücksichtigt.
Die Schwingungsdauer der Schwingung mit der Frequenz Ω+ω

2 ist gegeben durch:

τ =
4π

Ω + ω
(1.31)

Die Zeit zwischen zwei Stillständen desselben Pendels bezeichnet man als Schwebungszeit Ts.
Ein Pendel steht still, wenn gilt:

(

Ω − ω

2

)

t =
π

2
,

3π

2
, . . . bzw. 0, π, 2π, . . . (1.32)

Somit ist die Schwebungszeit Ts gegeben durch:

Ts =
2π

Ω − ω
(1.33)

Zusätzlich findet man die folgenden Zusammenhänge zwischen den vier charakteristischen
Zeiten τω, τΩ, τ und Ts:

1
τ
=

1
2

(

1
τω

+
1

τΩ

)

(1.34a)

1
Ts

=
1

τΩ

−
1

τω
(1.34b)

1.2.4 Kopplungsgrad

Wenn das Trägheitsmoment J der Pendel bekannt ist, kann aus den Schwingungszeiten τω

und τΩ das Kopplungsmoment D f dynamisch bestimmt werden. Nach (1.19) und (1.24) gilt:

Dg =
4π2 J

τ2
ω

D f =
1
2

(

4π2 J

τ2
Ω

− Dg

) (1.35)
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Damit findet man:

D f = 2π2 J

(

1
τ2

Ω

−
1

τ2
ω

)

(1.36)

Den Kopplungsgrad k definiert man als das Verhältnis k =
D f

Dg+D f
. Mit den Werten für Dg und

D f ergibt sich somit:

2π2 J
(

1
τ2

Ω

− 1
τ2

ω

)

4π2 J
τ2

ω
+ 2π2 J

(

1
τ2

Ω

− 1
τ2

ω

) =

1
τ2

Ω

− 1
τ2

ω

1
τ2

Ω

+ 1
τ2

ω

=
τ2

ω − τ2
Ω

τ2
ω + τ2

Ω

= k (1.37)

Des Weiteren können k und D f statisch durch den Vergleich der Auslenkungen der beiden
Pendel bestimmt werden. Wird beispielsweise das Pendel 2 in der Lage φ2 festgehalten, so
stellt sich bei dem Pendel 1 die Auslenkung φ1 ein. Unter Berücksichtigung der Masse m′ des
Pendelschaftes gilt:

D f (φ2 − φ1) = Dgφ1 = g
(

mL + m′l
)

φ1 (1.38)

und somit:

D f = g
(

mL + m′l
) φ1

φ2 − φ1
(1.39)

Aus dem Verhältnis der beiden Auslenkungen kann nun der Kopplungsgrad bestimmt wer-
den:

Dg
φ1

φ2−φ1

Dg

(

1 + φ1
φ2−φ1

) =
φ1

φ2
= k (1.40)

1.3 Experiment

1.3.1 Versuchszubehör

Komponente Dimension Anzahl

Handstoppuhr 1
Pendelstange: hS=850mm ± 0.5mm 2

mS=131.40g ± 0.01g
Pendelkörper mZ=174.54g ± 0.01g 2
Kopplungshaken mM=8.77g ± 0.01g 2

1.4 Durchführung

1.4.1 Erdbeschleunigung

Zuerst wollen wir die Schwerebeschleunigung g auf der Erde bestimmen. Miss dazu 25 mal
die Schwingungsdauer t eines einzelnen ungekoppelten Pendels und trage die Messdaten in
der Tabelle (A.2.1) ein. Miss anschliessend mit einer Schieblehre die in der Tabelle im Anhang
angegebenen Dimensionen des Pendels. Diese werden später benötigt, um den Schwerpunkt
und das Trägheitsmoment des Pendels zu bestimmen.
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1.4.2 Schwebung und Kopplungseigenschaften

Wir führen folgende vier Grössen ein:

τω Schwingungsdauer des gekoppelten Pendels
bei gleichphasiger Schwingung

τΩ Schwingungsdauer des gekoppelten Pendels
bei gegenphasiger Schwingung

τ Schwinungsdauer des gekoppelten Pendels bei
Pendel A ruhend und Pendel B bewegt

TS Schwebungsperiode

a) Wähle eine Kopplung der Pendel, indem du die Fixiermuttern auf eine beliebige Höhe
einstellst (diese Höhe muss für beide Pendel gleich sein). Miss nun den Abstand von der
Drehachse der Pendel bis zur Fixiermutter und notiere den Wert in der Tabelle (A.2.2)
im Anhang. Wichtig: Für diese gesamte Messreihe darf diese Höhe nicht mehr verändert
werden! Ebenso sollte der horizontale Abstand der Pendelaufhängungen oben gleich
bleiben.

b) Miss nun die oben eingeführten Grössen τω 25 mal, τΩ 25 mal, τ 15 mal und TS 5 mal.
Trage deine Messdaten in der Tabelle (A.2.2) ein. Achte darauf, dass

– beim gleich- bzw. gegenphasigen Schwingen die Pendel gleich stark ausgelenkt
sind.

– beim gegenphasigen Schwingen sowie bei den Messungen von τ und TS die Pendel
von der Mitte her gegen aussen losgelassen werden um ein Zusammenstossen der
Pendelkörper zu vermeiden.

– beim Loslassen dem Pendel kein zusätzlicher Impuls übertragen wird.

c) Bringe beide Pendel in die Ruhelage und lenke dann eines der Pendel aus. Halte die-
ses in dieser Position ruhig und warte, bis sich wieder ein Gleichgewicht eingestellt hat.
Miss nun die horizontale Auslenkung der beiden Pendel in diesem Gleichgewichtszu-
stand in Bezug auf die anfängliche Ruhelage. Du kannst diese Messung für insgesamt
drei verschiedene Auslenkungen durchführen und die Daten in der Tabelle eintragen.

d) Wähle nun eine andere Kopplung der Pendel indem du die Fixiermuttern höher oder
tiefer stellst und beginne wieder von vorne.

Gehe die Punkte a) bis d) für insgesamt drei verschiedene Kopplungen durch und erzeuge so
drei vollständige Messreihen.

1.5 Auswertung

1.5.1 Erdbeschleunigung

a) Berechne den Mittelwert, die Standardabweichung und die Standardabweichung des
Mittelwertes der gemessenen Schwingungsperioden t. Untersuche die Abweichung vom
idealisierten Fall des mathematischen Pendels, welches durch die Formel

T0 = 2π

√

l

g
(1.41)

gegeben ist. Dabei ist l die Pendellänge und g die Erdbeschleunigung. Der Literaturwert
der Schwerebeschleunigung auf der Erde sei mit g = 9.81m/s2 gegeben.

10



b) Berechne den Schwerpunkt des Pendels mit Hilfe der Formel

~rS =
ρ

Mtot
~ez

π

2

(

R2
Zh2

Z + R2
S

(

h2
S − h2

Z

))

(1.42)

Hierbei ist RZ der Aussenradius des Zylinders und hZ die Höhe des Zylinders. RS ist
der Radius der Pendelstange und Mtot ist die Gesamtmasse des Pendels. Dieses ist aus
Stahl und hat eine Dichte von ρ = 7.68g/cm3. Die Höhe der Pendelstange hS sei mit
850mm anzunehmen.

c) Berechne durch Umstellen der Formel 1.41 aus deinen Messwerten die Erdbeschleuni-
gung g und vergleiche sie mit dem theoretischen Wert. Benutze dazu den Abstand der
Drehachse zum Schwerpunkt des Pendels für die Pendellänge l, den du mit der Formel
1.42 bestimmt hast.

d) Gib dein Ergebnis mit dem statistischen und systematischen Fehler an unter Berücksich-
tigung der üblichen Fehlerfortpflanzung.

1.5.2 Schwebung

a) Berechne für deine Messwerte für τω, τΩ, τ und TS jeweils den Mittelwert, die Standard-
abweichung und die Standardabweichung des Mittelwerts.

b) Verwende die Formeln

τ =
2τωτΩ

τω + τΩ

(1.43)

TS =
τωτΩ

τω − τΩ

(1.44)

die aus den Gleichungen 1.34a und 1.34b kommen, um aus den gemessenen Werten τω

und τΩ die Schwingungsdauer τ und die Schwebungszeit TS zu berechnen. Setze dazu
jeweils die Mittelwerte ein. Vergleiche die so bestimmten Werte für τ und TS mit den
Mittelwerten der gemessenen Werten.

c) Führe eine ausführliche Fehlerrechnung durch und gib an, ob deine Ergebnisse inner-
halb der Fehlerschranken liegen. Können die in Formel 1.43 bzw. 1.44 beschriebenen
Abhängigkeiten bestätigt werden?

1.5.3 Kopplungsmoment und Kopplungsgrad

a) Das Trägheitsmoment des Pendels JP entspricht der Summe der Trägheitsmomente sei-
ner Einzelkomponenten

JP = JS + JZ + JM (1.45)

JS ist das Trägheitsmoment des Pendelstabes, JZ das Trägheitsmoment des Massenzylin-
ders und JM dasjenige der Fixiermutter. Bestimme das Trägheitsmoment des Pendels JP

mit Hilfe der untenstehenden Formeln

JS =
mS

12

(

3R2
S + h2

S

)

+ mSL2
SM (1.46)

mS ist die Masse des Stabes, RS dessen Radius, hS die Höhe des Stabes und LSM der
Abstand des Schwerpunktes des Stabes zur Drehachse.

JZ =
mZ

12

(

3
(

R2
Z + r2

Z

)

+ h2
Z + 12L2

ZM

)

(1.47)
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mZ ist die Masse des Zylinders, RZ und rZ sind der Aussen- bzw. Innenradius des Mas-
senzylinders, hZ die Zylinderhöhe und LZM der Abstand des Schwerpunktes des Zylin-
ders zur Drehachse.

JM =
mM

12

(

3
(

R2
M + r2

M

)

+ h2
M + 12L2

MM

)

(1.48)

Analog ist mM die Masse der Fixiermutter, RM und rM sind der Aussen- bzw. Innenra-
dius der Fixiermutter, hM ihre Höhe und LMM der Abstand der Fixiermutter zur Dreh-
achse. Die ausführliche Herleitung hierzu befindet sich im Anhang (A.1). Bestimme das
Trägheitsmoment JP des Pendels.

b) Bestimme bei gegebener Pendellänge von hS = 850mm die Auslenkwinkel θlinks und
θrechts bei der statischen Auslenkung jeweils für das linke und das rechte Pendel. Ver-
wende den Mittelwert der jeweiligen drei bestimmten Auslenkwinkel θlinks und θrechts.

c) Berechne nun das statische Kopplungsmoment für die drei Messreihen mit dem Aus-
druck

D f = g
(

mL + m′l
) θlinks

θrechts − θlinks
(1.49)

wobei der Term m′l (Fixiermutter) vernachlässigt werden darf. m ist die Masse des Pen-
dels und L sei hier der Abstand des Schwerpunktes des Pendels zur Drehachse.

d) Das Kopplungsmoment lässt sich auch mit τω und τΩ dynamisch bestimmen:

D f = 2π2 J

(

1
τ2

Ω

−
1

τ2
ω

)

(1.50)

Berechne die dynamischen Kopplungsmomente und vergleiche deine Ergebnisse mit den
statisch bestimmten Werten.

e) Berechne für alle drei Messreihen den Kopplungsgrad statisch mit der Formel

k =
θlinks

θrechts
(1.51)

f) Bestimme schliesslich den Kopplungsgrad dynamisch mit der Formel

k =
τ2

ω − τ2
Ω

τ2
ω + τ2

Ω

(1.52)

und vergleiche die so erhaltenen Ergebnisse mit denjenigen aus der statischen Betrach-
tung.

g) Wie sieht allgemein der Zusammenhang zwischen dem Kopplungsgrad k und der Schwe-
bungszeit TS aus?

h) Wie liesse sich der Versuchsaufbau verbessern? Was könnte man bei der Durchführung
dieses Experiments optimieren?
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Appendix

A.1 Trägheitsmoment des Pendels

Das Trägheitsmoment des Pendels nach Abbildung 1.1 setzt sich aus den Trägheitsmomenten
des Massenzylinders JZ, des Stabes JS und dem der Fixiermutter der Kopplung JM zusammen.
Dabei vernachlässigen wir die Trägheitsmomente der Koplungsschraube und des Fixierbol-
zens des Massenzylinders. JZ und JM können durch das Trägheitsmoment eines Hohlzylin-
ders und JS durch das eines Zylinders ausgedrückt werden. Das Trägheitsmoment ist das In-
tegral über den Abstand ds2 aller Einzelmassen dm vom Zentrum des Körpers der Dichte ρ. Da
es sich bei allen drei Körpern um Zylinder handelt, werden in den folgenden Berechnungen
Zylinderkoordinaten, r′, ϕ, z, verwendet. Die Rotation der Körper erfolgt in diesem Versuch
um die y-Achse. Das kartesische x kann daher über den Zylinderradius r′ und den Winkel
ϕ zwischen x und r′ ausgedrückt werden, gemäss x = r′ cos(ϕ). Der Abstand s eines Mas-
senpunktes von der Drehachse y lässt sich nach Pythagoras durch s2 = x2 + z2 ausdrücken.
In Zylinderkoordinaten drückt sich das Volumenelement dV durch dV = r′dr′dϕdz aus. Das
Massenelement dm ist dabei durch dm = ρdV mit dem Volumenelement verknüpft. Somit gilt
allgemein für das Trägheitsmoment eines Zylinders:

JZylinder =
∫

M
s2dm =

∫

V
s2ρ(s)dV

ρ(s)=ρ
= ρ

∫

V
s2dV

= ρ

∫

r′

∫

ϕ

∫

z
s2r′dr′dϕdz

= ρ

∫

r′

∫

ϕ

∫

z
(x2 + z2)r′dr′dϕdz

(A.1)

Mittels (A.1) lässt sich nun einfach das Trägheitsmoment Js
Z des Massenzylinders der Dichte
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ρZ, Höhe h, Innenradius r und Aussenradius R berechnen:

Js
Z = ρZ

∫

r′

∫

ϕ

∫

z
(x2 + z2)r′dr′dϕdz

= ρZ

∫ R

r

∫ 2π

0

∫ h/2

−h/2
(x2 + z2)r′dr′dϕdz

= ρZ

∫ R

r

∫ 2π

0

∫ h/2

−h/2
(x2r′ + z2r′)dr′dϕdz

= ρZ

∫ R

r

∫ 2π

0

∫ h/2

−h/2
(r′3 cos2(ϕ) + z2r′)dr′dϕdz

= 2ρZ

∫ R

r

∫ 2π

0

∫ h/2

0
(r′3 cos2(ϕ) + z2r′)dr′dϕdz

= 2ρZ

∫ 2π

0

∫ h/2

0

[

r′4

4
cos2(ϕ) +

z2

2
r′2

]R

r

dϕdz

= 2ρZ

∫ 2π

0

∫ h/2

0

[

(R4 − r4)

4
cos2(ϕ) + (R2 − r2)2 z2

2

]

dϕdz

= 2ρZ2π

∫ h/2

0
(R2 − r2)

z2

2
dz + 2ρZ

∫ h/2

0

∫ 2π

0

R4 − r4

4
cos2(ϕ)dϕdz

= 2ρZ2π

∫ h/2

0
(R2 − r2)

z2

2
dz + 2ρZ

∫ h/2

0

R4 − r4

4
πdz

= 2ρZ

∫ h/2

0

[

(R4 − r4 π

4
+ (R2 − r2)

z2

2
2π

]

dz

= 2ρZ

[

(R4 − r4)
π

4
h

2
+ (R2 − r2)

1
6

(

h

2

)3

2π

]

= ρπ(R2 − r2)h

[

(R2 + r2)
1
4
+

h2

12

]

(A.2)

Mit der Masse mZ des Massenzylinders und seinem Volumen VZ = π(R2 − r2)h erhält man
aus (A.2):

Js
Z =

mZ

12

[

3(R2 + r2) + h2] (A.3)

Da in dem vorliegenden Versuch die Mittelpunkte der beiden Massenzylinder in einem gewis-
sen Abstand LZM von ihrer Rotationsachse schwingen, muss nun noch das Trägheitsmoment
des Massenzylinders bezüglich seines Aufhängepunktes mit dem Satz von Steiner berechnet
werden:

JZ = Js
Z + mL2

ZM

=
mZ

12

[

3(R2
Z + r2

Z) + h2
Z

]

+ mL2
ZM

=
mZ

12

[

3(R2
Z + r2

Z) + h2
Z + 12L2

ZM

]

(A.4)

Das Trägheitsmoment JM der Fixiermutter der Masse mM, Höhe hM, Innenradius rM, Aussen-
radius RM, sowie dem Abstand der Mutter zur Drehachse LMM berechnet sich dann analog
zu (A.2)-(A.4) zu:

JM = Js
M + mML2

MM

=
mM

12

[

3(R2
M + r2

M) + h2
M

]

+ mML2
MM

=
mM

12

[

3(R2
M + r2

M) + h2
M + 12L2

MM

]

(A.5)
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Zur Berechnung des Trägheitsmomentes JS des Stabes der Höhe hS, Masse mS, Radius r und
Abstand des Stabes zur Drehachse LSM erfolgt ebenfalls analog zu (A.2)-(A.4), jedoch muss in
diesem Fall der Radius dr′ nicht von r bis R, sondern lediglich von 0 bis r integriert werden,
woraus folgt:

JS = Js
S + mSL2

SM

=
mS

12

[

3R2
S + h2

S

]

+ mSL2
SM

(A.6)

Das Trägheitsmoment JP des Pendels ergibt sich somit zu:

JP = JZ + JS + JM (A.7)
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A.2 Übersicht über die Messdaten

A.2.1 Erdbeschleunigung

# 1 2 3 4 5 6 7 8 9 10 11 12
t [s]

13 14 15 16 17 18 19 20 21 22 23 24 25

Radius der Pendelstange RS

Länge der Pendelstange ∆lS

Innenradius der Fixiermutter rM

Aussenradius der Fixiermutter RM

Höhe der Fixiermutter hM

Innenradius des Zylinders rZ

Aussenradius des Zylinders RZ

Höhe des Zylinders hZ

A.2.2 Schwebung und Kopplungseigenschaften

Höhe Fixiermutter Höhe Fixiermutter Höhe Fixiermutter

# τω τΩ τ TS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

# τω τΩ τ TS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

# τω τΩ τ TS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Auslenkung links rechts
1
2
3

Auslenkung links rechts
1
2
3

Auslenkung links rechts
1
2
3
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