Modul Mechanik

Gekoppelte Pendel

Zwei Pendel, zwischen denen Energie ausgetauscht werden kann, wer-
den als gekoppelte Pendel bezeichnet. Auf jedes Pendel wirkt ein durch die
Schwerkraft verursachtes Richtmoment, welches versucht, das Pendel in
die Ruhelage zuriickzufiihren. Zudem macht sich die vorhandene Kopp-
lung in Form eines zusétzlichen Richtmoments bemerkbar, das so wirkt,
dass die Feder moglichst entspannt wird.

In diesem Versuch werden sowohl gleich- und gegenphasige Schwingun-
gen als auch Schwebungen untersucht. Dazu werden die Kreisfrequen-
zen Ty, T, T und T; experimentell bestimmt und anschlieffend unterein-
ander und mit theoretischen Werten verglichen.
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1.1 Fragen zur Vorbereitung

e Was ist eine harmonische Schwingung?

e Wie lautet ihre Bewegungsgleichung?

Wie lauten ihre Losungen?

Wodurch unterscheidet sich eine harmonische von einer gedampften Schwingung?

Wo treten harmonische und wo gedampfte Schwingungen auf?

Was ist Schwebung?

1.2 Theorie

1.2.1 Das physikalische und das mathematische Pendel

Als physikalisches Pendel bezeichnet man einen starren Korper, der unter Wirkung der Schwer-
kraft Drehschwingungen um eine feste Achse ausfiihren kann. Sei | das Tragheitsmoment in
Bezug auf die Drehachse und M das riicktreibende Drehmoment. Dann lautet die Bewegungs-
gleichung;:

Jp = M = —mgl - sin(¢p) (1.1)
Bezeichnet man D = mgl als das Direktionsmoment und betrachtet nur kleine Auslenkungs-
winkel ¢, dann gilt:
J¢ = —mgl - sin(¢)
~ —mgl-¢ (1.2)
= —D¢
Somit lautet die Schwingungsgleichung des physikalischen Pendels:

b+
J

Als Losung von (1.3) findet sich die ungeddmpfte harmonische Schwingung

¢ =0 (1.3)

$(t) = A - sin(wot + 9) (1.4)

mit der Frequenz wy = % = ZT—;T, der Phase § und der darausfolgenden Schwingungsdauer

des Pendels:
To = 274/ l (1.5)
D

Die Schwingungsdauer des mathematischen Pendels erhélt man als idealisierten Fall des phy-
sikalischen Pendels, indem man die gesamte Masse m des physikalischen Pendels in seinem
Schwerpunkt S konzentriert betrachtet. Dabei habe der Schwerpunkt von der Drehachse den
Abstand /. Damit ergibt sich (1.5) zu:

2
Ty =27, | mi 2n\ﬁ (1.6)
mgl g



1.2.2 Bewegungsgleichungen des gekoppelten Pendels

Zur Herleitung der Bewegungsgleichungen des gekoppelten Pendels betrachten wir zwei
identische Pendel, die in der gleichen Ebene schwingen konnen und die durch eine weiche
Feder gekoppelt sind. Im vorliegenden Versuch tibernimmt eine an einem Faden frei beweg-
liche Kopplungsmasse die Aufgabe der Feder (siehe Abbildung 1.1).
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Abbildung 1.1: Versuchsaufbau

Jedes Pendel besitzt die Masse m im Abstand L von der Drehachse. Infolge der Schwerkraft

betrdgt das riicktreibende Moment M, bei kleinen Auslenkungen ¢ fiir beide Pendel wie in
(1.1),(1.2):

My = —mgLp = —Dg¢ (1.7)

Des Weiteren greift an beiden Pendeln ein Kopplungsmoment M an. Dieses Kopplungsmo-
ment hidngt von der Federkonstante k, dem Angriffspunkt der Kopplungsfeder / und der Dif-
ferenz der beiden Auslenkungen ¢; und ¢, ab, gemafs:

Mg = —kI*- (¢p1 — ¢2) = =Dy - (¢1 — $2) (1.8)

Da die Feder bereits eine gewisse Spannung besitzt, wenn sich die Pendel in ihrer Ruhelage
befinden, entsteht ein weiteres Moment M. Durch die Federspannung zeigen die Pendel in
ihrer Ruhelage einen Ausschlag a, bzw. —a beziiglich ihrer Vertikallage. Berechnet man nun
die Auslenkungen ¢; und ¢, von dieser Ruhelage, so fillt das Moment der Vorspannung M
aus der Rechnung heraus, da das Moment des einen Pendels mgla durch das Moment des
anderen Pendels —mgla aufgehoben wird.



Somit findet man fiir die Momentengleichungen der Pendel 1 und 2:

M = Mg,1 + Mf/l

= —Dgp1 + Dy (¢2 — 1)
My = Mgp + Myp

= =Dy — Dy (¢2 — 1)

Einsetzen von (1.9) in die Bewegungsgleichung des physikalischen Pendels (1.1) fithrt somit
auf die simultanen Differentialgleichungen des gekoppelten Pendels:

(1.9)

EZZ
74;1 = —Dg¢1 + Dy (¢2 — 1)

EZZ
% = —Dg¢p2 — Dy (¢2 — 1)

Durch Addition (Subtraktion) dieser Gleichungen (1.10) erhdlt man die Differentialgleichun-
gen der Winkelsumme (¢; + ¢2) (Winkeldifferenz (¢; — ¢2)):

(1.10)

dZ
]% = —Dg (2 + 1) 1.11)
42 (¢ — |
]% = — (Dg+2Dy) (¢2— 1)

Beide Gleichungen (1.11) stellen, wie (1.3), ungeddmpfte harmonische Schwingungen dar. Als
Losungen findet man analog zu (1.4):

(2 + 1) = 2A - cos (wt + 9)
(¢p2 — 1) = 2B - cos (Ut + A)

wobei 2A und 2B die Amplituden der Summe, respektive der Differenz der Winkelausschldge
der beiden Pendel und w, () die Kreis- oder Eigenfrequenzen sind:

_ |Dg
YTV
o_ /Dg+]2Df

Zur Beschreibung der Bewegungen der einzelnen Pendel, trennt man die Variablen ¢; und ¢,
durch Subtraktion, respektive Addition der Gleichungen (1.12):

(1.12)

(1.13)

¢$p1 = A-cos(wt+6)—B-cos(Qt+A)

1.14
¢ = A-cos (wt+0)+ B-cos (Ot + A) (114)

Genaueres Betrachten der Bewegungsgleichungen (1.14) zeigt, dass die allgemeinste Bewe-
gung jedes Pendels durch eine Uberlagerung zweier harmonischer Schwingungen verschie-
dener Frequenzen, eine sogenannte Schwebung, beschrieben wird. Dabei entspricht die An-
zahl der Eigenschwingungen der Anzahl Freiheitsgrade des Systems (ein Pendel hat einen
Freiheitsgrad und somit eine Eigenschwingung, zwei Pendel haben zwei Freiheitsgrade und
somit zwei Eigenschwingungen). Auf Grund der speziellen Art der Kopplung ist die Eigen-
frequenz w gerade die Eigenfrequenz des ungekoppelten Pendels (siehe Abschnitt 1.2.1).



1.2.3 Anfangsbedingungen

Damit die im vorherigen Abschnitt 1.2.2 hergeleiteten Bewegungsgleichungen (1.14) eindeu-
tig bestimmt sind, miissen die vier unbekannten Variablen A, B, §, A bestimmt werden. Dazu
benotigt man vier zusédtzliche voneinander unabhidngige Bewegungsgleichungen oder An-
fangsbedingungen. Dazu kann man die folgenden drei Félle unterscheiden:

1. Fall: Beide Pendel werden zur gleichen Zeit t = 0 in der Lage ¢ = ¢» = ¢ losgelassen, so
dass sie in Phase schwingen. Fiir t = 0 ergeben sich somit die folgenden Anfangsbedingun-
gen:

d
(1.15)
p=p P2 g
dt
Einsetzen von (1.15) in (1.14) liefert:
Acos (8) —Bcos (A) = Acos () + Beos (A) =¢ (1.16)
—Awsin (6) + BQsin (A) = —Awsin (§) — BQsin (A) =0 ‘
wobei w # 0 und Q) # 0. Damit findet man fiir die gesuchten Grofien:
A= B=0
? . (1.17)
6=0 A = unbestimmt
Somit wird die Schwingung des Systems durch die folgende Gleichung beschrieben:
P1 = P = ¢ - cos(wt) (1.18)

Diese Schwingung enthélt nur eine Eigenfrequenz w und wird als symmetrisch bezeichnet. Da-
bei ist nicht die Symmetrie der Bewegung, sondern die Symmetrie der Gleichungen gemeint.
Es lasst sich gut beobachten, dass in diesem Fall die Kopplung der beiden Pendel gar nicht
zur Geltung kommt und die Feder fortwédhrend im selben Spannungszustand bleibt.

Die Schwingungsdauer ist gegeben durch:

27 J
— =277, | =— 1.19
Tw Dg ( )

2. Fall: Die beiden Pendel werden zur Zeit t = 0 in der Lage ¢1 = —¢, bzw. ¢ = ¢ losge-
lassen, so dass sie gegenphasig in entgegengesetztem Sinn schwingen. Damit lassen sich die
Anfangsbedingungen folgendermassen aufstellen:

d
p=—¢ T =0
(1.20)
_ dga
pp=+¢ - =0
Einsetzen von (1.20) in (1.14) liefert:
—Acos (0) + Bcos (A) = Acos () + Beos (A) =¢ (1.21)

—Awsin (§) + BQsin (A) = —Awsin (6) — BQsin(A) =0



wobei w # 0 und Q) # 0. Damit findet man fiir die gesuchten Grossen:

A=0 B=¢
) (1.22)
4 = unbestimmt A=0
Somit wird die Schwingung des Systems durch die folgende Gleichung beschrieben:
$p2 = —¢1 = ¢ - cos () (1.23)

Auch in diesem Fall enthilt die Schwingung nur eine Eigenfrequenz (). Diese Form der Schwin-
gung wird asymmetrisch bezeichnet.
Die Schwingungsdauer ist gegeben durch:

27 i
- =27, | —21 1.24
RS D; + 2Dy (124)

3.Fall: Zur Zeitt = 0 wird das Pendel 1 aus der Lage ¢; = 0 und das Pendel 2 aus der Lage
¢» = ¢ losgelassen. Die Anfangsbedingungen sind dann gegeben durch:

$1=0 % =0
t (1.25)
n=9 P o
2 dt
Einsetzen von (1.25) in (1.14) liefert:
$1(0) = Acos (6) —Bcos (A) =0
— Awsin (§) + BQsin (A) =0 (1.26)
$2(0) = Acos (6) + Bcos (A) =¢
— Awsin (§) — BQsin (A) =0
wobei auch hier w # 0 und Q) # 0 gilt. Damit findet man fiir die gesuchten Grossen:
¢ ¢
A== B=2=
2 2 (1.27)
6=0 A=0
Damit erhdlt man die folgenden Schwingungsgleichungen:
1 = ¢ (cos (wt) — cos (Ot))
2 (1.28)

P2 = % (cos (wt) 4 cos (Qt))

Einfachheitshalber werden diese Gleichungen (1.28) mit den folgenden Additionstheoremen

umgeschrieben:
cos(a) + cos(B) = 2cos (%ﬂ) cos (.32;“>

cos(a) — cos(B) = 2sin <ﬁ%> “in <ﬁ%a> (1.29)



Somit werden die Gleichungen (1.28) zu:

$1 = Ppsin <Q+wt> -sin (Q;wt>
(1.30)

2
¢2 = ¢ cos <Q;Lwt> - COs <Q;wt>

Nach (1.13) wird bei schwacher Kopplung (D < Dg) Q — w klein gegen Q) + w. Somit &n-
Otw
t)
2

dern sich die beiden Funktionen sin (25“¢) und cos (25%t) langsam gegen sin ( und

cos (%t) Daher kann die Bewegung jedes einzelnen Pendels als Schwingung mit der Fre-

% aufgefasst werden, deren Amplitude einer langsamen periodischen Anderung

der Frequenz % unterworfen ist. Dies wird als Schwebung bezeichnet. Zwischen den beiden

Bewegungen der beiden Pendel besteht dabei ein Phasenunterschied von 7. Das bedeutet,
dass das eine Pendel zum Stillstand kommt, wenn das andere Pendel die maximale Amplitu-
de erreicht. Die Schwingungsenergie wandert also andauernd zwischen den beiden Pendeln
hin und her. Im Experiment wird diese Energie schliesslich als Konsequenz der Reibung zu-
nehmend in Wéarme umgewandelt. Diese Dampfung wurde in der Rechnung jedoch nicht
berticksichtigt.

O+w

Die Schwingungsdauer der Schwingung mit der Frequenz =5 ist gegeben durch:

quenz

S 47
O+ w
Die Zeit zwischen zwei Stillstinden desselben Pendels bezeichnet man als Schwebungszeit Ts.
Ein Pendel steht still, wenn gilt:

(1.31)

O—-w T3
< 5 > t= 5,7,... bzw. O,7T,27T,... (132)
Somit ist die Schwebungszeit T; gegeben durch:
27
Ts = 1.33
= o (133)

Zusétzlich findet man die folgenden Zusammenhénge zwischen den vier charakteristischen
Zeiten 1, 7o, T und Ts:

1 1/1 1

==+ = 1.34

T 2 <Tw + TQ) (1.342)
1 1 1

— = = 1.34b

1.24 Kopplungsgrad

Wenn das Tragheitsmoment | der Pendel bekannt ist, kann aus den Schwingungszeiten 1,
und 7, das Kopplungsmoment D dynamisch bestimmt werden. Nach (1.19) und (1.24) gilt:

4 2
D¢ = sz

© o (1.35)
D, (& _p
f_z T(?_) 8



Damit findet man:

1 1

D =21 | & — — 1.36

¢ =277 <Tg T£> (136)

Den Kopplungsgrad k definiert man als das Verhéltnis k = DgDTfo' Mit den Werten fiir D, und
Dy ergibt sich somit:

2 1 1 1 1
271](%—%> :%_%:TEJ—TE): (1.37)
2 1 1 2 2 :
Frwl (o) stw RO

Des Weiteren kénnen k und Dy statisch durch den Vergleich der Auslenkungen der beiden
Pendel bestimmt werden. Wird beispielsweise das Pendel 2 in der Lage ¢» festgehalten, so
stellt sich bei dem Pendel 1 die Auslenkung ¢ ein. Unter Beriicksichtigung der Masse m’ des
Pendelschaftes gilt:

D¢ (2 — ¢1) = Dy = g (mL + m'l) ¢y (1.38)
und somit:
_ ! #
Dy =g (mL+m'l) po—s (1.39)

Aus dem Verhiltnis der beiden Auslenkungen kann nun der Kopplungsgrad bestimmt wer-
den:

$1
Dsird 1 _y (1.40)
¢
Dy (1 + ¢zf¢1) P
1.3 Experiment
1.3.1 Versuchszubehor
| Komponente Dimension | Anzahl |
Handstoppuhr 1
Pendelstange: hs=850mm =+ 0.5mm 2
mgs=131.40g £ 0.01g
Pendelkorper mz=174.54g - 0.01g 2
Kopplungshaken my=8.77g £+ 0.01g 2

1.4 Durchfiihrung

1.4.1 Erdbeschleunigung

Zuerst wollen wir die Schwerebeschleunigung ¢ auf der Erde bestimmen. Miss dazu 25 mal
die Schwingungsdauer ¢ eines einzelnen ungekoppelten Pendels und trage die Messdaten in
der Tabelle (A.2.1) ein. Miss anschliessend mit einer Schieblehre die in der Tabelle im Anhang
angegebenen Dimensionen des Pendels. Diese werden spéter benotigt, um den Schwerpunkt
und das Tragheitsmoment des Pendels zu bestimmen.



1.4.2 Schwebung und Kopplungseigenschaften

Wir fiihren folgende vier Grossen ein:

To Schwingungsdauer des gekoppelten Pendels
bei gleichphasiger Schwingung

To Schwingungsdauer des gekoppelten Pendels
bei gegenphasiger Schwingung

T  Schwinungsdauer des gekoppelten Pendels bei
Pendel A ruhend und Pendel B bewegt

Ts Schwebungsperiode

a) Wihle eine Kopplung der Pendel, indem du die Fixiermuttern auf eine beliebige Hohe
einstellst (diese Hohe muss fiir beide Pendel gleich sein). Miss nun den Abstand von der
Drehachse der Pendel bis zur Fixiermutter und notiere den Wert in der Tabelle (A.2.2)
im Anhang. Wichtig: Fiir diese gesamte Messreihe darf diese Hohe nicht mehr verandert
werden! Ebenso sollte der horizontale Abstand der Pendelaufhdngungen oben gleich
bleiben.

b) Miss nun die oben eingefiihrten Grossen T, 25 mal, 7o 25 mal, T 15 mal und Ts 5 mal.
Trage deine Messdaten in der Tabelle (A.2.2) ein. Achte darauf, dass

— beim gleich- bzw. gegenphasigen Schwingen die Pendel gleich stark ausgelenkt
sind.

— beim gegenphasigen Schwingen sowie bei den Messungen von 7 und Ts die Pendel
von der Mitte her gegen aussen losgelassen werden um ein Zusammenstossen der
Pendelkorper zu vermeiden.

- beim Loslassen dem Pendel kein zusétzlicher Impuls iibertragen wird.

c) Bringe beide Pendel in die Ruhelage und lenke dann eines der Pendel aus. Halte die-
ses in dieser Position ruhig und warte, bis sich wieder ein Gleichgewicht eingestellt hat.
Miss nun die horizontale Auslenkung der beiden Pendel in diesem Gleichgewichtszu-
stand in Bezug auf die anfangliche Ruhelage. Du kannst diese Messung fiir insgesamt
drei verschiedene Auslenkungen durchfiihren und die Daten in der Tabelle eintragen.

d) Wiahle nun eine andere Kopplung der Pendel indem du die Fixiermuttern hoher oder
tiefer stellst und beginne wieder von vorne.

Gehe die Punkte a) bis d) fiir insgesamt drei verschiedene Kopplungen durch und erzeuge so
drei vollstindige Messreihen.

1.5 Auswertung

1.5.1 Erdbeschleunigung

a) Berechne den Mittelwert, die Standardabweichung und die Standardabweichung des
Mittelwertes der gemessenen Schwingungsperioden t. Untersuche die Abweichung vom
idealisierten Fall des mathematischen Pendels, welches durch die Formel

I
To = 2714 | — (1.41)

gegeben ist. Dabei ist | die Pendelldnge und g die Erdbeschleunigung. Der Literaturwert
der Schwerebeschleunigung auf der Erde sei mit ¢ = 9.81m/s? gegeben.
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b) Berechne den Schwerpunkt des Pendels mit Hilfe der Formel

Fs = Nf zzg (R34 + R2 (1% — 1)) (1.42)
tot

Hierbei ist Rz der Aussenradius des Zylinders und hz die Hohe des Zylinders. Rg ist

der Radius der Pendelstange und M;,; ist die Gesamtmasse des Pendels. Dieses ist aus

Stahl und hat eine Dichte von p = 7.68¢/cm®. Die Hohe der Pendelstange hs sei mit

850mm anzunehmen.

¢) Berechne durch Umstellen der Formel 1.41 aus deinen Messwerten die Erdbeschleuni-
gung ¢ und vergleiche sie mit dem theoretischen Wert. Benutze dazu den Abstand der
Drehachse zum Schwerpunkt des Pendels fiir die Pendelldnge I, den du mit der Formel
1.42 bestimmt hast.

d) Gib dein Ergebnis mit dem statistischen und systematischen Fehler an unter Beriicksich-

tigung der tiblichen Fehlerfortpflanzung.

1.5.2 Schwebung

a) Berechne fiir deine Messwerte fiir 7, 7o, T und Ts jeweils den Mittelwert, die Standard-
abweichung und die Standardabweichung des Mittelwerts.

b) Verwende die Formeln
27T,TO

Tw + 0
TwTO
Tg = ——— 1.44
ST (1.44)

die aus den Gleichungen 1.34a und 1.34b kommen, um aus den gemessenen Werten 7,
und T die Schwingungsdauer T und die Schwebungszeit Ts zu berechnen. Setze dazu
jeweils die Mittelwerte ein. Vergleiche die so bestimmten Werte fiir T und Ts mit den
Mittelwerten der gemessenen Werten.

c) Fiihre eine ausfiihrliche Fehlerrechnung durch und gib an, ob deine Ergebnisse inner-
halb der Fehlerschranken liegen. Kénnen die in Formel 1.43 bzw. 1.44 beschriebenen
Abhédngigkeiten bestétigt werden?

1.5.3 Kopplungsmoment und Kopplungsgrad

a) Das Tragheitsmoment des Pendels Jp entspricht der Summe der Tragheitsmomente sei-
ner Einzelkomponenten
Jp=Js+]z+]m (1.45)

Js ist das Tragheitsmoment des Pendelstabes, |7 das Tragheitsmoment des Massenzylin-
ders und Jj dasjenige der Fixiermutter. Bestimme das Tragheitsmoment des Pendels Jp
mit Hilfe der untenstehenden Formeln
= s
Js =15
mg ist die Masse des Stabes, Rg dessen Radius, hg die Hohe des Stabes und Lgp; der
Abstand des Schwerpunktes des Stabes zur Drehachse.

(3RS + h3) + msL3), (1.46)

Jz =22 (3(RE+13) + 1, +1213,) (147)

11



e)

f)

g)

h)

myz ist die Masse des Zylinders, Rz und rz sind der Aussen- bzw. Innenradius des Mas-
senzylinders, hz die Zylinderhche und Lzy; der Abstand des Schwerpunktes des Zylin-
ders zur Drehachse.

Im = ";_g/f (3 (R3y +734) + Hay + 1213 1) (1.48)

Analog ist m); die Masse der Fixiermutter, Ry und r) sind der Aussen- bzw. Innenra-
dius der Fixiermutter, i, ihre Hohe und Ly der Abstand der Fixiermutter zur Dreh-
achse. Die ausfiihrliche Herleitung hierzu befindet sich im Anhang (A.1). Bestimme das
Tragheitsmoment Jp des Pendels.

Bestimme bei gegebener Pendelldnge von hg = 850mm die Auslenkwinkel 6;;,;s und
Orecnts bei der statischen Auslenkung jeweils fiir das linke und das rechte Pendel. Ver-
wende den Mittelwert der jeweiligen drei bestimmten Auslenkwinkel ;x5 und 6,,cpts-

Berechne nun das statische Kopplungsmoment fiir die drei Messreihen mit dem Aus-
druck

O)ink
Ds= L ) ——% 1.4
/ § (m o ) Grechts - Qlinks ( 9)

wobei der Term m’'l (Fixiermutter) vernachlédssigt werden darf. m ist die Masse des Pen-
dels und L sei hier der Abstand des Schwerpunktes des Pendels zur Drehachse.

Das Kopplungsmoment ldsst sich auch mit 7, und 1 dynamisch bestimmen:
1 1
D=2 (& — = 1.50

Berechne die dynamischen Kopplungsmomente und vergleiche deine Ergebnisse mit den
statisch bestimmten Werten.

Berechne fiir alle drei Messreihen den Kopplungsgrad statisch mit der Formel

k= Duinks (1.51)
Grechts

Bestimme schliesslich den Kopplungsgrad dynamisch mit der Formel

2 2
g AmiLis (1.52)
5+ 15

und vergleiche die so erhaltenen Ergebnisse mit denjenigen aus der statischen Betrach-
tung.

Wie sieht allgemein der Zusammenhang zwischen dem Kopplungsgrad k und der Schwe-
bungszeit Ts aus?

Wie liesse sich der Versuchsaufbau verbessern? Was konnte man bei der Durchfiihrung
dieses Experiments optimieren?

12



A1 Tragheitsmoment des Pendels

Das Tragheitsmoment des Pendels nach Abbildung 1.1 setzt sich aus den Tragheitsmomenten
des Massenzylinders ], des Stabes Js und dem der Fixiermutter der Kopplung Jj; zusammen.
Dabei vernachlidssigen wir die Tragheitsmomente der Koplungsschraube und des Fixierbol-
zens des Massenzylinders. [z und [y konnen durch das Tragheitsmoment eines Hohlzylin-
ders und Js durch das eines Zylinders ausgedriickt werden. Das Tragheitsmoment ist das In-
tegral iiber den Abstand ds? aller Einzelmassen dm vom Zentrum des Kérpers der Dichte p. Da
es sich bei allen drei Kérpern um Zylinder handelt, werden in den folgenden Berechnungen
Zylinderkoordinaten, 1/, ¢, z, verwendet. Die Rotation der Korper erfolgt in diesem Versuch
um die y-Achse. Das kartesische x kann daher iiber den Zylinderradius ' und den Winkel
¢ zwischen x und ' ausgedriickt werden, geméss x = ' cos(¢p). Der Abstand s eines Mas-
senpunktes von der Drehachse y lasst sich nach Pythagoras durch s? = x? + z2 ausdriicken.
In Zylinderkoordinaten driickt sich das Volumenelement dV durch dV = r'dr'dpdz aus. Das
Massenelement dm ist dabei durch dm = pdV mit dem Volumenelement verkniipft. Somit gilt
allgemein fiir das Tragheitsmoment eines Zylinders:

Jzylinder = /Mszdm = /V s’p(s)dV
p(s)=p / 2
= av
P VS
=p///szr'dr'dgodz
rJeJz

=p///(x2—|—zz)r’dr’dq)dz
rJeJz

Mittels (A.1) lasst sich nun einfach das Tragheitsmoment |5, des Massenzylinders der Dichte

(A.1)
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pz, Hohe h, Innenradius r und Aussenradius R berechnen:

i :pz/ / /(x2+22)r’dr’dgodz
27 h/2
= / / / (x? 4 22)rdr' ddz
h/2

2t rh/2
= / / / (2?1 + 22 )dr' dgdz
h/2
27 h/2
= / / / (r® cos? (@) + 2% )dr' ddz
h/2

2w rh/2
=207 / / / (1" cos? (@) + 2%)dr' dpdz
r 0 0
27 ph/2 14 2 R
=207 / / [r_ cos’(¢@) + Z—rlz} dpdz
0o Jo 4 2 ,
TR 1Y) 2 0%
= 2pz/0 /o [T cos“ (@) + (R —r7) E] dodz
h/2 2 h/2 p2m R4 _ 44
:2p227r/ (Rz—rz)z—dz+2pz/ / R cos?(p)dedz
0 2 0 0 4
h/2 2 h/2 R4 _ 4
= 2pz27r/ (R* — rz)z_dz +2p7 / R—r mdz
0 2 0 4

h/2 2
=207 / [(R4 Ay (R% — rz)%27r] dz
0

(A.2)

4
3
(R* — 4 )gg—i—(R 2)% (g) 27{]

= pr(R*> — *)h | (R® + rz)1 + e
4 12

2 — 12)h erhalt man

Mit der Masse my des Massenzylinders und seinem Volumen V; = 7(R
aus (A.2):

5 = 12 [3(R2+r )+ 1] (A.3)

Da in dem vorliegenden Versuch die Mittelpunkte der beiden Massenzylinder in einem gewis-
sen Abstand Lzy von ihrer Rotationsachse schwingen, muss nun noch das Tragheitsmoment
des Massenzylinders beziiglich seines Aufhdngepunktes mit dem Satz von Steiner berechnet

werden: )
Jz = fsz + mLZM

= 12 Z [3(R% +1%) + W% + 12013,

Das Tragheitsmoment J; der Fixiermutter der Masse m1;, Hohe hy,, Innenradius r;, Aussen-
radius Ry, sowie dem Abstand der Mutter zur Drehachse Lyp berechnet sich dann analog
zu (A.2)-(A4) zu:

Jm = ]15\/1 + mML%v[M
m
= 2 [3(RR + rRa) + Wy] + L (A5)
= T2 [3(RYy + &) + W+ 1203
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Zur Berechnung des Tragheitsmomentes Js des Stabes der Hohe hg, Masse mg, Radius r und
Abstand des Stabes zur Drehachse Lgy erfolgt ebenfalls analog zu (A.2)-(A.4), jedoch muss in
diesem Fall der Radius dr’ nicht von r bis R, sondern lediglich von 0 bis r integriert werden,
woraus folgt:
Js = J§ +msLiy
m

= 35 [BRE +1E] + msLiy,

Das Tragheitsmoment Jp des Pendels ergibt sich somit zu:

(A.6)

Jp=1Jz+Js+]um (A7)
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A.2 Ubersicht iiber die Messdaten

A.21 Erdbeschleunigung

# 1

2

3 4

9 10

11

12

t [s]

13 14

15

16 17

18

19

20

21

22 23

24

25

Radius der Pendelstange Rs

Hohe der Fixiermutter hj,

Lange der Pendelstange Al

Innenradius des Zylinders rz

Innenradius der Fixiermutter 7y,

Aussenradius des Zylinders Ry

Aussenradius der Fixiermutter R,

Hohe des Zylinders hy

A.2.2 Schwebung und Kopplungseigenschaften

‘ Hohe Fixiermutter

‘ ‘ ‘ Hohe Fixiermutter

‘ ‘ Hohe Fixiermutter

# | Tu 0 T T # | To (7) T T # | 1o 0 T Ts

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

15 15 15

16 16 16

17 17 17

18 18 18

19 19 19

20 20 20

21 21 21

22 22 22

23 23 23

24 24 24

25 25 25

Auslenkung | links | rechts|| Auslenkung | links | rechts|| Auslenkung| links | rechts
1 1 1
2 2 2
3 3 3
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