Modul Mechanics

Coupled Pendulum

Two pendulums that can exchange energy are called coupled pendulums.
The gravitational force acting on the pendulums creates rotational stiff-
ness that drives each pendulum to return to its rest position. This cou-
pling also produces an additional rotational stiffness that causes the spring
to decompress as much as possible.

In this experiment, both oscillations in phase and opposite in phase as
well as beats are studied. For this purpose, the angular frequencies 7,
Ta, T and T; will be determined experimentally and then compared to
each other as well as to literature values.
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1.1 Preliminary Questions

e What is a harmonic oscillation?

What is its equation of motion?

What are its solutions?

What is the difference between a harmonic and a damped oscillation?

Where can harmonic and a damped oscillation be found?

What is beat frequency?

1.2 Theory

1.2.1 The physical and the mathematical pendulum

A physical pendulum is defined as a rigid body that can perform rotary oscillation around
a fixed axis under influence of the gravitational force. Let | be the moment of inertia with
respect to the axis of rotation and M be the opposing torque. Then the following equation of
motion holds:

J¢ = M = —mgl - sin(¢) (1.1)

If D = mgl is defined as the rotational stiffness and only small initial angles ¢ are considered,
then:

J¢ = —mgl - sin(¢p)
~ —mgl-¢ (1.2)
= —D¢

It follows that the equation of oscillatory motion is:

b+
J

The solution for (1.3) is the undamped harmonic oscillation

¢ =0 (1.3)

$(t) = A -sin(wot + 9) (1.4)

with the frequency wy = % = ZT—;T, the phase ¢ and the period of the pendulum that follows

To = 271\/% (1.5)

The period of the mathematical pendulum follows from the idealized case of the physical
pendulum by considering the total mass m of the physical pendulum to be concentrated in its
centre of mass S. Let I be the distance between centre of mass and the axis of rotation. Then

(1.5) becomes:
2
Ty =27, f mi 2n\ﬁ (1.6)
mgl 8

from this:



1.2.2 Equations of motion of the coupled pendulum

In order to derive the equations of motion of the coupled pendulum, we consider two identical
pendulums that can oscillate in the same plane and are coupled by a soft spring. For the
experiment at hand, a freely movable coupling mass that hangs from a thread takes the role
of the spring (see figure 1.1).

o) |
o)™

Figure 1.1: Experimental set-up

Each pendulum has the mass m at a distance L of the rotational axis. The opposing torque due
to gravity M, at small initial angles ¢ is for both pendulums as in (1.1),(1.2):

My = —mgLp = —Dy¢p (1.7)

Additionally, a coupling torque My acts on both pendulums. This coupling torque depends
on the spring constant k, the point / the coupling spring is attached to and the difference of
the two initial angles ¢; and ¢, as follows:

My = —kI® - (¢1 — ¢2) = =Dy - (p1— ¢2) (1.8)

Since the spring is already slightly in tension when the pendulums are at rest, there is another
torque My. The tension of the spring causes the pendulums to be at rest at an angle « and —«
respectively relative to the vertical position. When calculating the angles ¢; and ¢» from this
rest position, the torque of the initial tension My can be reduced from the equation, since the
torque mgla of one pendulum is offset by the torque —mgla of the other one.



Therefore, we find for the torque equations of the pendulums 1 and 2:

M = Mg,1 + Mf/l

= —Dg¢1 + Dy (¢2 — 1)
My = Mgp + Myp

= =Dy — Dy (¢2 — 1)

Thus, inserting (1.9) into the equation of motion of the physical pendulum (1.1) leads to the
simultaneous differential equations of the coupled pendulum:

(1.9)

EZZ
74;1 = —Dg¢1 + Dy (¢2 — 1)

EZZ
% = —Dg¢p2 — Dy (¢2 — 1)

By adding (subtracting) these equations (1.10) we get the differential equations of the angle
sum (¢1 + ¢2) (angle difference (p1 — ¢2)):

(1.10)

dZ
]% = —Dg (2 + 1) 1.11)
42 (¢ — |
]% = — (Dg+2Dy) (¢2— 1)

Both equations (1.11) are like (1.3) equations of undamped harmonic oscillations. The solu-
tions are analogous to (1.4):

(2 + 1) = 2A - cos (wt + 9)
(¢p2 — 1) = 2B - cos (Ut + A)

where 2A and 2B are the amplitudes of the sum and the difference between the initial angles
of the two pendulums, respectively, and w, () are the angular or eigen frequencies:

_ |Dg
YTV
o_ /Dg+]2Df

In order to describe the motion of the individual pendulums, the two variables ¢; and ¢, are
separated by subtraction and addition of the equations (1.12) respectively:

(1.12)

(1.13)

¢$p1 = A-cos(wt+6)—B-cos (Ot +A)

1.14
¢ = A-cos(wt+6)+ B-cos (Ot + A) (114

However, a closer look at the equations of motion (1.14) reveals that the most general motion
of each pendulum is given by an overlap of two harmonic oscillations with different frequen-
cies, a so-called beat. Here, the number of eigen oscillations is equal to the number of degrees
of freedom of the system (one pendulum has one degree of freedom and therefore one eigen
oscillation, two pendulums have two degrees of freedom and consequently two eigen oscilla-
tions). Due to the special kind of coupling the eigen frequency w is exactly the eigen frequency
of the uncoupled pendulum (see section 1.2.1).



1.2.3 Initial conditions

In order for the equations of motion (1.14) derived in the previous section 1.2.2 to be uniquely
defined the four unknown variables A, B, §, A need to be determined. For this purpose, four
additional equations of motion or initial conditions are needed that are independent of each
other. To do this, we can distinguish the following three cases:

1st case: Both pendulums are released at the same time t = 0 at angles ¢1 = ¢» = ¢ so they
oscillate in phase. Thus, for t = 0 the following initial conditions hold:

a
dg (1.15)
_ d¢p  _
=9 G =0
Inserting (1.15) in (1.14) yields:
Acos (6) — Bcos (A) = Acos (6) + Beos (A) =¢ (1.16)
—Awsin (6) + BOsin (A) = —Awsin (§) — BQsin(A) =0 '
where w # 0 and Q) # 0. As a result, we find:
A=¢ B=0
) (1.17)
6=0 A = undetermined
Thus, the oscillation of the system is described by the following equation:
$1 =2 = ¢ - cos(wt) (1.18)

This oscillation only contains one eigen frequency w and is called symmetrical. This is not due
to the symmetry of motion but the symmetry of the equation. It is easy to observe that in this
case the coupling of the two pendulums has no effect and the spring is constantly in the same
state of tension.

The period of oscillation is given by:

27 Il
Ty = o 27 D_g (1.19)
2nd case: The two pendulums are released at time t = 0 at angles ¢; = —¢ and ¢» = ¢ re-

spectively, such that they oscillate opposite in phase to each other. This leads to the following
starting conditions:

d
1= —¢ % =0
i, (1.20)
pp=+¢ —= =0
Inserting (1.20) in (1.14) yields:
—Acos (0) + Bcos (A) = Acos () + Beos (A) =¢ (1.21)

—Awsin (6) + BOsin (A) = —Awsin (§) — BQsin(A) =0



where w # 0 and Q) # 0. Thus we find:

) (1.22)
0 = undetermined A=0
and the oscillation of the system is described by the following equation:
P = —p1 = ¢ - cos (Qt) (1.23)

In this case the oscillation has only one eigen frequency () as well. This kind of oscillation is
called asymmetric.
The period of oscillation is given by:

2
TQ:—T[:27T I

B — (1.24)
0 Dy + 2Dy

3rd case: Attime t = 0 pendulum 1 is released at angle ¢; = 0 and pendulum 2 at angle
¢» = ¢. The starting conditions are then given by:

Ay

¢ =0 1 _ o
dt (1.25)
p=9 P _o
2 dt
Inserting (1.25) in (1.14) yields:
$1(0) = Acos (6) —Bcos (A) =0
— Awsin (§) + BQsin (A) =0 (1.26)
$2(0) = Acos (6) + Bcos (A) =¢
— Awsin (§) — BQsin (A) =0
where w # 0 and Q) # 0 again. Thus we find:
¢ ¢
A=1L B=<L
2 2 (1.27)
60=0 A=0

and the equations of oscillation are found to be:

1 = % (cos (wt) — cos (Ot))
; (1.28)
P = 5 (cos (wt) + cos (Ot))

For the sake of simplicity, the equations (1.28) are rewritten with the following addition theo-

rems:
cos () + cos(B) = 2cos (fszﬂ> €08 <132;w>

cos(a) — cos(B) = 2sin <ﬁ%> “in <ﬁ%a> (1.29)



Thus equations (1.28) become:

$1 = Ppsin <Q+wt> -sin (Q;wt>

2
¢2 = ¢ cos <Q;Lwt> - COs <Q;wt>

From (1.13) we see that at weak coupling (D < Dg) () — w becomes small compared to

Q—w Q—w

=t et
2 2

(1.30)

Q) + w. Thus, the two functions sin ( ) and cos ( ) slowly change to sin (25¢t) and
cos (%t) For this reason, the motion of each single pendulum can be considered as oscil-
lation with the frequency % and an amplitude that slowly changes periodically with the
frequency £5¢. This is known as a beat. In this process, there is a phase difference of Z be-
tween the two motions of the pendulums. That means that any time one of the pendulums is
at rest the other one is at its maximum amplitude. We see that the oscillation energy is contin-
uously transferred back and forth between the two pendulums. In the experiment this energy
is eventually transformed more and more into thermal energy due to friction. However, this
damping effect was not considered in the calculations.

The period of an oscillation at frequency % is given by:

S 4r
O+w
The time difference between two instances when the same pendulum is at rest is called beat
period Ts. A pendulum is at rest whenever the following holds:

(1.31)

O—-w T3
<T> t = TN or, resp. 0, 77, 27, . ... (1.32)
Thus the beat period T is given by:
271
Ts = 1.
e (133)

Additionally, the following dependencies can be found between the four characteristic periods
Tw, T, T and Ty:

1 1/1 1

—=-|=—+—= 1.34

T 2 (Tw+TQ> (1.34)
1 1 1

_—=——— 1.34b
T o Tw (1.34b)

1.2.4 Degree of coupling

If the moment of inertia of the pendulums is known, the coupling torque D ¢ can be deter-
mined dynamically from the periods of oscillation 7, and 7. From (1.19) and (1.24) we get:

4m?]
Dg=—~

© (1.35)
D, (& _p
f__z T% 8



Thus we find:

1 1
D =21 | & — — 1.36
;=2 <Tg T£> (136)
The degree k of the coupling is defined by the ratio k = %. Inserting the values for Dg and
Dy yields:
2 1 1 1 1
271](%—%> :%_%:TEJ—TE): (1.37)
2 1 1 2 2 :
%Jﬂnz](%—%) 2tz Wtk

Additionally, k and Dy can be determined statically by comparing the initial angles of the two
pendulums. For example, if pendulum 2 is fixed at angle ¢», pendulum 1 will go to angle ¢;.
Taking into account the mass m'’ of the pendulum shaft yields:

D (¢o — ¢1) = Dy = g (mL +m'l) ¢4 (1.38)
and thus:
D= g (mL+m'l 1 1.39
P =3 e (1.39)
The degree of coupling can now be determined from the ratio of the two initial angles:
1
1 T TR (1.40)

Dg(1+ﬁ) Rz

1.3 Experiment

1.3.1 Inventory

| Component Dimension | Number |
Stopwatch 1
Pendulum rod: hs=850mm =+ 0.5mm 2
mg=131.40g £ 0.01g
Pendulum weight mz=174.54g + 0.01g 2
Coupling hook mp=8.77g + 0.01g 2

1.4 Execution

1.4.1 Gravitational acceleration

First we want to determine the acceleration due to gravity on earth g. Measure 25 times the
period t of a single uncoupled pendulum and enter the measurement data into table (A.2.1).
Next, use a calliper rule to measure the dimensions of the pendulum given in the table in the
appendix. They are needed later to determine the centre of mass and the moment of inertia of
the pendulum.



1.4.2 Schwebung und Kopplungseigenschaften
We introduce the following four quantities:

T, period of the coupled pendulum when oscillat-
ing in phase

T period of the coupled pendulum when oscillat-
ing opposite in phase

T  period of the coupled pendulum when pendu-
lum A is at rest and pendulum B moves

Ts beat period

a) Choose a coupling of the pendulums by adjusting the fixing nut to an arbitrary height
(this height needs to be equal for both pendulums). Now measure the distance of the
axis of rotation of the pendulums from the fixing nut and fill in the value in table (A.2.2)
in the appendix. Important to note: This height may not be changed any more throughout
the whole series of measurements! Likewise, the horizontal distance of the pendulum
suspensions from the ceiling should stay the same.

b) Measure now the quantities introduced previously; 7, 25 times, T 25 times, T 15 times
and Ts 5 times. Fill in your measurement data in table (A.2.2). Take care that

— the absolute value of the initial angles should be the same for oscillation in phase
and oscillation opposite in phase.

- when measuring oscillation opposite in phase, or when measuring T or Ts, the
pendulums should be released from the centre outwards, so that collisions of the
pendulum weights can be prevented.

- you do not transfer an additional momentum when releasing the pendulums.

¢) Set both pendulums at rest before putting one at an angle. Hold it in this position and
wait for an equilibrium to establish itself once more. Now measure the horizontal angle
of the two pendulums in this equilibrium with respect to the former position at rest. You
can perform this measurement for three different angles and fill the data into the table.

d) Now choose a different coupling of the pendulums by adjusting the fixing nut to a higher
or lower position and repeat the experiment from the beginning.

Perform steps a) to d) for three different couplings in total and gather data for three complete
measurement series.

1.5 Analysis

1.5.1 Gravitational acceleration

a) Calculate the mean value, the standard deviation and the standard deviation of the mean
of the measured periods t. Analyse the difference from the ideal case of the mathematical

pendulum given by the formula
To=2m 1 (1.41)
8

Here, [ is the length of the pendulum and g the gravitational acceleration. The literature
value of the gravitational acceleration on earth is given by ¢ = 9.81m /5.

10



b) Calculate the centre of mass of the pendulum with the formula

o= 2P (R + RE (2 - 13)) 1
tot

Here, Ry is the outer radius of the cylinder and /7 is its height. Rg is the radius of the

pendulum rod and M;,; is the total mass of the pendulum. The pendulum is made of

steel and has a density of p = 7.68¢/cm?>. The height of the pendulum rod hs should be

assumed to be 850mm.

¢) Re-arrange the formula 1.41 to calculate the gravitational acceleration g from your data
and compare it to the theoretical value. Use for this the distance of the axis of rotation
to the centre of mass of the pendulum for length | which you determined with equation
1.42.

d) Present your result with the statistical and systematic error considering the usual error
propagation.
1.5.2 Beat

a) Calculate from your data for each 7, 7o, T and Ts the mean, the standard deviation and
the standard deviation of the mean.

b) Use the formulas
27T,TO

7= (1.43)
Tw + 0
TwTO

Tg = —— 1.44

ST (1.44)

that are derived from the equations 1.34a and 1.34b to calculate the period T and the beat
period T; from the measured values 7, and 7. Use the respective mean values for this.
Compare the values determined this way with the mean values you measured for T and
Ts.

c) Perform a detailed error estimation and state whether your results are within the error
bars. Can you confirm the relations given in the formulas 1.43 and 1.44?

1.5.3 Coupling torque and degree of coupling

a) The moment of inertia of the pendulum Jp is equal to the sum of the moments of inertia
of its separate components

Jp=Js+]z+]m (1.45)

Js is the moment of inertia of the pendulum rod, [z the one for the cylinder weight and
Jum the one for the fixing nut. Determine the moment of inertia of the pendulum with
the formulas given below:

ng

=0 (3RS + h3) + msL3), (1.46)

Js

mg is the mass of the rod, Rg is its radius, hg its height and Lgy the distance of its centre
of mass to its axis of rotation.
mz

Jo= 15 (3 (RZ +1%) + 1% +12L%))) (1.47)

11



f)

g)
h)

myz is the mass of the cylinder, Rz and rz are the outer and inner radius of the cylinder
weight respectively, hiz is the height of the cylinder and Lz the distance of its centre of
mass to the axis of rotation.

Im = ";_g/f (3 (R3y +734) + Hay + 1213 1) (1.48)

Analogous, m ), is the mass of the fixing nut, Ry; and rj; are the outer and inner radius
of the fixing nut, hy is its height and Ly is its distance to the axis of rotation. The
detailed derivation is given in appendix (A.1). Determine the moment of inertia Jp of
the pendulum.

Determine the initial angles 6.7 and 6,;¢),; in the static case at the given length of the
pendulum rod hs = 850mm for the left and right pendulum respectively. Use the mean
value of each of the three initial angles 0;,; and 6,;¢,; you determined.

Calculate the static coupling torque for the three measurement series as

Orink
Ds= L ) ——% 1.4
/ § (m o ) Qrechts - elinks ( 9)

where the term m'l (fixing nut) may be neglected. m is the mass of the pendulum and L
is the distance of the centre of mass to its axis of rotation.

The coupling torque can also be determined dynamically 7., and 1q:

1 1
— 2 i
Dy =2m1"] (Té TZ‘;) (1.50)
Calculate the dynamcal coupling torque and compare your results with the statically de-
termined values.

Calculate the degree of coupling statically for each of the three measurement series with
the equation
Oreft

k=
Gright

(1.51)

Finally, determine the degree of coupling dynamically with the equation

2 — T3

2+ 13

(1.52)

and compare the results derived this way with the ones from the static calculation.
How do the degree of coupling k and the beat period Ts relate to each other in general?

How could the experimental set-up be improved? What could be optimized when per-
forming the experiment?

12



A.1 Moment of inertia of the pendulum

The moment of inertia of the pendulum from figure 1.1 is composed from the moments of
inertia of the cylinder weight [z, of the rod Js and the fixing nut of the coupling Jj;. We neglect
the moments of inertia of the coupling screw and the mounting bolt of the cylinder. [z and
Jm can be expressed as the moments of inertia of a hollow cylinder and Js as the moment of
inertia of a cylinder. The moment of inertia is the integral over the distances ds? of all separate
masses dm from the centre of the body with density p. As all three bodies are cylinders, we
use cylindrical coordinates 7/, ¢, z for the calculations that follow. The rotation of the bodies is
around the y-axis in this experiment. We can therefore express the Cartesian x via the radius
r" of the cylinder and the angle ¢ between x and ' as x = 7' cos(¢). The distance s of a
point mass from the axis of rotation y is written according to Pythagoras as s> = x? + z2. In
cylindrical coordinates, the volume element dV can be expressed as dV = r'dr'dpdz. The mass
element dm is related to the volume element via dm = pdV. Therefore, the general equation
for the moment of inertia of a cylinder is:

cylinder = 2d :/ 2 av
Jeylind /MS m= s p(s)
p(s)=p / 2
= av
fl,s
= p/ / /szr’dr’dgodz
rJeJz
—p / / / (x2 + 2)r'dr' dgdz
rJe Jz

Using (A.1), we can now simply calculate the moment of inertia |5, of the cylinder weight of

(A1)
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density pz, height h, inner radius r and outer radius R:

i :pz/ / /(x2+22)r’dr’dgodz
27 h/2
= / / / (x? 4 22)r'dr' ddz
h/2

2t rh/2
= / / / (2?1 + 22 )dr' dgdz
h/2
27 h/2
= / / / (r® cos? (@) + 2% dr' ddz
h/2

2w rh/2
=207 / / / (1" cos? (@) + 2%)dr' dpdz
r 0 0
27 ph/2 14 2 R
=207 / / [r_ cos’(¢@) + Z—rlz} dpdz
0o Jo 4 2 ,
2 ;2 [(RE — 4 2
= ZpZ/ / [% cos®(@) + (R* — rz)z%] dodz
o Jo

h/2 2 /2 p2m R4 _ A
:2p227r/ (Rz—rz)%dz+2pz/ / R 1 " cos?(p)dodz
0 o Jo

(A.2)

h/2 2 h/2 R4 _ 44
= 2pz27r/ (R* — rz)z_dz +2p7 / " rdz
0 2 0 4
h/2 2
:2pz/ (R* Ay (Rz—r2)2—27r dz
0 4 2

3
4 aTth »2 1(h
(R r)42+(R )6<2> 27{]
= pr(R*> — *)h | (R® + rz)1 + h—z
4 12
With the mass m of the cylinder weight and its volume V; = 71(R? — r?)h we get from (A.2):

mZ
12
As the centres of the two cylinder weights oscillate with a certain distance Lz from their axis

of rotation in this experiment, the moment of inertia of the cylinder weight must now also be
calculated with respect to its mount point via Steiner’s theorem:

J5 = [3(R*+ %) + 1] (A.3)

Jz = J5 + mLy,

mz
=15 BRE+712) +h7] +mlLyy (A4)
mz

T 12
The moment of inertia Jj; of the fixing nut of mass mys, height hy, inner radius ry;, outer

radius Ry, as well as the distance of the nut to the axis of rotation Ly we can calculate
analogous to (A.2)-(A.4):

[3(RZ +1%) +h% +1212,]

Jm = ]15\/1 + mML%v[M
m
= T [3(RR + rha) + By] + maa L (A5)
= T2 [3(RYy + &) + W+ 1203

14



The calculation of the moment of inertia Js of the rod with height hg, mass mg, radius r and
distance from the axis of rotation Ls); we can likewise perform analogous to (A.2)-(A.4). How-
ever, in this case the radius dr’ does not need to be integrated from r to R, but only from 0 to
r. This yields:

Js = Ji+msL2y,

m (A.6)
= 35 [BRE +1E] + msLiy,
The moment of inertia Jp of the pendulum is thus:
Jp=Jz+]s+]m (A7)

15



A.2 Overview of the measurement data

A.2.1 Gravitational acceleration

# 1 2 3 4 5 6 7 8 9 10 11 12
t [s]
13 14 15 16 17 18 19 20 21 22 23 24 25
Radius of the pendulum rod Rs Height of the fixing nut /1
Length of the pendulum rod Alg Inner radius of the cylinder rz
Inner radius of the fixing nut Outer radius of the cylinder Rz
Outer radius of the fixing nut R Height of the cylinder /7
A.2.2 Beat and coupling characteristics
Height of the fixing Height of the fixing Height of the fixing
nut nut nut
# | T 0 T T # | To (7) T T # | Tu 0 T Ts
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18 18 18
19 19 19
20 20 20
21 21 21
22 22 22
23 23 23
24 24 24
25 25 25
deflection left right deflection left right deflection left right
1 1 1
2 2 2
3 3 3
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